Kerja, Suhu, Kalor, Sistem, Lingkungan, Energi dalam
Sebelum melangkah lebih jauh, alangkah baiknya jika kita pahami kembali beberapa istilah dan konsep dasar yang sering digunakan dalam pokok bahasan termodinamika. Konsep usaha alias kerja (W) sudah dikupas tuntas dalam pokok bahasan usaha dan energi. Konsep suhu dan kalor sudah diobok-obok dalam pokok bahasan Suhu dan Kalor. Konsep energi dalam (energi dalam gas ideal) sudah dioprek dalam pokok bahasan Teori Kinetik Gas. Daripada dirimu harus membuka kembali lembaran yang lama, alangkah baiknya jika kita buka saja lembaran yang baru Met belajar, selamat menikmati sajian dari gurumuda… Semoga terasa lezat dan nikmat di otak… hiks2…
USAHA alias KERJA (W)
Sejauh ini kita sudah berkenalan dengan dua jenis gerakan, yakni gerak translasi (gerak lurus, gerak parabola dkk) dan gerak rotasi. Dengan demikian, kita bisa mengelompokkan kerja menjadi dua bagian, yakni kerja dalam gerak translasi dan kerja dalam gerak rotasi.
Kerja dalam gerak translasi
Dalam gerak translasi, kerja didefinisikan sebagai hasil kali antara perpindahan dengan komponen gaya yang searah dengan perpindahan. Secara matematis bisa ditulis seperti ini :
Keterangan :
W = Usaha alias kerja
F = gaya
s = perpindahan = perpindahan linear
Apabila benda yang dikenai gaya tidak mengalami perpindahan (s = 0), maka usaha alias kerja = 0. Demikian juga, apabila arah gaya tegak lurus arah perpindahan (teta = 90o. Cos 90o = 0), maka usaha alias kerja = 0.
Usaha hanya memiliki besar dan tidak mempunyai arah, karenanya termasuk besaran skalar. Walaupun gaya dan perpindahan termasuk besaran vektor tetapi usaha merupakan besaran skalar karena diperoleh dari perkalian skalar. Pelajari lagi materi vektor dan skalar kalau dirimu bingung…
Kerja dalam gerak rotasi
Dalam gerak rotasi, kerja didefinisikan sebagai hasil kali antara torsi dengan perpindahan sudut. Secara matematis bisa ditulis seperti ini :
Satuan Sistem Internasional (SI) untuk usaha alias kerja adalah newton meter (Nm). Satuan newton meter dikenal dengan julukan Joule ( 1 Joule = 1 N.m).
Hubungan antara usaha dengan energi
Usaha alias kerja berkaitan erat dengan energi. Untuk memahami hal ini, gurumuda menggunakan contoh saja… Misalnya dirimu mendorong sepeda motor yang lagi mogok… Sepeda motor bisa bergerak sejauh jarak tertentu (s) akibat adanya gaya dorong (F). Dalam hal ini, sepeda motor bisa bergerak karena dirimu melakukan usaha alias kerja pada sepeda motor tersebut. Ingat : Usaha alias kerja = W = Gaya dorong (F) x Perpindahan (s). Nah, ketika mendorong sepeda motor, dirimu kelelahan alias cape juga khan ? Hal itu disebabkan karena energi potensial kimia dalam tubuhmu berkurang. Sebagian energi potensial kimia dalam tubuhmu dipindahkan ke sepeda motor tersebut. Ketika bergerak, sepeda motor juga punya energi (energi kinetik = EK = ½ mv2. m = massa motor, v = kecepatan motor). Kita bisa mengatakan bahwa ketika dirimu melakukan usaha alias kerja pada motor, energi dalam tubuhmu dipindahkan pada sepeda motor.
Berdasarkan uraian singkat ini, bisa disimpulkan bahwa usaha alias kerja merupakan proses perpindahan energi melalui cara-cara mekanis (mekanis berhubungan dengan gerak menggerak )…
SUHU (T)
Konsep suhu alias temperatur sebenarnya berawal dari rasa panas dan dingin yang dialami oleh indera peraba kita. Berdasarkan apa yang dirasakan oleh indera peraba, kita bisa mengatakan suatu benda lebih panas dari benda yang lain. Atau suatu benda lebih dingin dari benda lain. Ukuran panas atau dinginnya suatu benda ini dikenal dengan julukan suhu alias temperatur. Benda yang terasa panas biasanya memiliki suhu yang lebih tinggi. Sebaliknya, benda yang terasa dingin memiliki suhu yang lebih rendah. Semakin dingin suatu benda, semakin rendah suhunya. Sebaliknya, semakin panas suatu benda, semakin tinggi suhunya. Btw, ukuran panas atau dinginnya suatu benda yang hanya didasarkan pada sentuhan (indera peraba) ini sebenarnya tidak terlalu jelas. Panas yang dirasakan oleh setiap orang bisa saja berbeda. Demikian juga, walaupun menyentuh benda yang sama, panas yang dirasakan oleh bagian tubuh yang berbeda bisa saja berbeda.
Dalam pokok bahasan teori kinetik gas kita sudah mendefinisikan kembali makna suhu. Berdasarkan sudut pandang mikroskopis, suhu sebenarnya merupakan ukuran dari energi kinetik translasi rata-rata molekul.
Satuan Sistem Internasional untuk suhu adalah Kelvin (K).
KALOR alias PANAS (Q)
Apabila benda2 yang memiliki perbedaan suhu saling bersentuhan, akan ada aliran kalor dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Aliran kalor akan terhenti setelah kedua benda yang bersentuhan mencapai suhu yang sama. Misalnya kalau kita mencampur air panas dengan air dingin, biasanya kalor mengalir dari air panas menuju air dingin. Kalor berhenti mengalir jika campuran air panas dan air dingin telah berubah menjadi air hangat. Biasanya kalor mengalir dengan sendirinya dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Aliran kalor cenderung menyamakan suhu benda yang bersentuhan.
Pada abad ke-18, para ilmuwan berpikir bahwa aliran kalor merupakan gerakan suatu fluida, suatu jenis fluida yang tidak kelihatan (fluida tuh zat yang dapat mengalir. Yang termasuk fluida adalah zat cair dan zat gas. Misalnya air… air khan bisa mengalir. Atau udara… Udara juga bisa mengalir). Fluida tersebut dinamakan Caloric. Teori mengenai Caloric ini akhirnya tidak digunakan lagi karena berdasarkan hasil percobaan, keberadaan si caloric ini tidak bisa dibuktikan.
Pada abad ke-19, seorang pembuat minuman dari Inggris yang bernama James Prescott Joule (1818-1889) mempelajari cara bagaimana agar air yang ada di dalam sebuah wadah bisa dipanaskan menggunakan roda pengaduk. Berikut ini kilasan singkat percobaan yang dilakukan oleh om Jimi.
Tataplah gambar di atas dengan penuh kelembutan. Pengaduk menempel dengan sumbu putar. Sumbu putar dihubungkan dengan beban menggunakan tali. Ketika beban jatuh, tali akan memutar sumbu sehingga pengaduk ikut2an berputar. Jika jumlah lilitan tali sedikit dan jarak jatuhnya beban kecil, maka kenaikan suhu air juga sedikit. Sebaliknya, jika lilitan tali diperbanyak dan benda jatuh lebih jauh, maka kenaikan suhu air juga lebih besar.
Ketika pengaduk berputar, pengaduk melakukan usaha alias kerja pada air. Besarnya kerja alias usaha yang dilakukan oleh pengaduk pada air sebanding dengan besarnya kerja alias usaha yang dilakukan oleh gaya gravitasi terhadap beban hingga beban jatuh sejauh h. Ingat rumus usaha alias kerja : Usaha (W) = Gaya (F) x perpindahan (s) = Gaya berat beban (w) x perpindahan beban (h) = massa beban (m) x percepatan gravitasi (g) x ketinggian (h). Ketika melakukan kerja terhadap air, pengaduk menambahkan energi pada air (ingat konsep usaha dan energi). Karenanya kita bisa mengatakan bahwa kenaikan suhu air disebabkan oleh energi yang dipindahkan dari pengaduk menuju air. Semakin besar kerja yang dilakukan, semakin banyak energi yang dipindahkan. Semakin banyak energi yang dipindahkan, semakin besar kenaikan suhu air (air semakin panas).
Berdasarkan hasil percobaannya, om Jimi Joule membuat perbandingan. Ketika ibu kesayangan hendak memanaskan air di dapur, wadah yang berisi air disentuhkan dengan nyala api yang menyembur dari kompor. Ketika nyala api dan wadah yang berisi air bersentuhan, kalor mengalir dari api (suhu tinggi) menuju air (suhu rendah). Oya, aliran kalor mampir sebentar di wadah. Karena ada aliran kalor dari api menuju air, maka air yang pada mulanya kedinginan menjadi kepanasan (suhu air meningkat).
Setelah membuat perbandingan antara meningkatnya suhu air karena bersentuhan dengan api dan meningkatnya suhu air akibat adanya kerja yang dilakukan oleh pengaduk, om Jimi menyimpulkan bahwa kalor sebenarnya merupakan energi yang berpindah. Ingat ya, kalor bukan energi (kalor bukan suatu jenis energi tertentu). Jadi ketika kalor mengalir dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah, sebenarnya energi-lah yang berpindah dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Proses perpindahan energi akan terhenti ketika benda-benda yang bersentuhan mencapai suhu yang sama. Berdasarkan penjelasan yang panjang pendek dan bertele2 di atas, kita bisa menyimpulkan bahwa kalor merupakan energi yang berpindah dari satu benda ke benda yang lain akibat adanya perbedaan suhu.
Satuan kalor adalah kalori (disingkat kal). Satuan kalor yang sering digunakan, terutama untuk menyatakan nilai energi makanan adalah kilokalori (kkal). 1 kkal = 1000 kalori. 1 kkal = 1 Kalori (huruf K besar). Btw, kalori bukan satuan Sistem Internasional. Satuan Sistem Internasional untuk kalor adalah Joule (J).
Berdasarkan penjelasan di atas, tampak bahwa kalor (Q) memiliki kemiripan dengan usaha alias kerja (W). Kalor bisa diartikan sebagai perpindahan energi yang disebabkan oleh adanya perbedaan suhu, sedangkan usaha alias kerja bisa diartikan sebagai perpindahan energi melalui cara-cara mekanis (mekanis tuh berkaitan dengan gerak)…
SISTEM dan LINGKUNGAN
Dalam termodinamika, kita selalu menganalisis proses perpindahan energi dengan mengacu pada suatu sistem. Sistem adalah sebuah benda atau sekumpulan benda yang hendak diteliti… Benda-benda lainnya di alam semesta dinamakan lingkungan… Biasanya sistem dipisahkan dengan lingkungan menggunakan “penyekat/pembatas/pemisah”. Untuk memudahkan pemahamanmu, gurumuda menggunakan ilustrasi saja… tataplah gambar di bawah dengan penuh kelembutan…
Misalnya kita hendak menyelidiki air yang berada di dalam termos. Air yang ada di dalam termos merupakan sistem, sedangkan udara dan benda-benda lainnya yang berada diluar termos merupakan lingkungan… dinding termos, baik dinding kaca pada bagian dalam termos maupun dinding plastik pada bagian luar termos berfungsi sebagai penyekat alias pemisah…
Terdapat beberapa jenis sistem, yakni sistem terbuka dan sistem tertutup. Sistem terbuka merupakan sistem yang memungkinkan terjadinya pertukaran materi dan energi antara sistem tersebut dengan lingkungan… Contoh sistem terbuka adalah tumbuh-tumbuhan, hewan dkk… Tumbuh-tumbuhan biasanya menyerap air dan karbondioksida dari lingkungan (terjadi pertukaran materi). Tumbuhan juga membutuhkan kalor yang dipancarkan matahari (terjadi pertukaran energi). Dirimu dan diriku juga termasuk sistem terbuka… Masih banyak contoh lain…
Sebaliknya, sistem tertutup merupakan sistem yang tidak memungkinkan terjadinya pertukaran materi antara sistem tersebut dengan lingkungan. Sistem tertutup dikatakan terisolasi jika tidak adanya kemungkinan terjadi pertukaran energi antara sistem dengan lingkungan. Sistem tertutup dikatakan tidak terisolasi jika bisa terjadi pertukaran energi antara sistem dengan lingkungan… Contoh sistem tertutup yang terisolasi adalah termos air panas. Dinding bagian dalam dari termos air panas biasanya terbuat dari bahan isolator (untuk kasus ini, isolator = bahan yang tidak menghantarkan panas). Btw, dalam kenyataannya memang banyak sistem terisolasi buatan yang tidak sangat ideal. Minimal ada energi yang berpindah keluar, tapi jumlahnya sangat kecil.
ENERGI DALAM (U)
Energi dalam merupakan salah satu konsep paling penting dalam termodinamika. Kita bisa mendefinisikan energi dalam dengan mengacu pada teori kinetik. Teori kinetik mengatakan bahwa setiap zat terdiri dari atom atau molekul, di mana atom atau molekul tersebut bergerak terus menerus secara sembarangan… Ketika bergerak, atom atau molekul pasti punya kecepatan. Atom atau molekul juga punya massa. Karena punya massa (m) dan kecepatan (v), maka tentu saja atom atau molekul mempunyai energi kinetik (EK). Kita bisa mengatakan bahwa energi dalam merupakan jumlah seluruh energi kinetik atom atau molekul, ditambah jumlah seluruh energi potensial yang timbul akibat adanya interaksi antara atom atau molekul…
Hukum pertama termodinamika
Pengantar
Pernah memanaskan air ? Kalau kita panaskan air menggunakan wadah seperti panci, misalnya, biasanya setelah air mendidih, tutup panci bisa bergerak sendiri. Tutup panci bisa bergerak karena ditendang oleh uap yang lagi kepanasan dalam panci… Ingin bebas, katanya. Sudah bosan hidup di penjara… Ada lagi contoh yang mirip. Dirimu pernah ngemil popcorn ? Mudah2an sudah… Kalau belum, minta saja di toko terdekat. Ssttt… jangan lupa bawa uang receh secukupnya, biar dirimu tidak diomelin. Btw, tahu cara membuat popcorn ? Biasanya popcorn dimasukkan ke dalam wadah lalu dipanaskan. Setelah kepanasan, biji popcorn berdisco ria dengan teman-temannya dan mendorong penutup wadah. Aneh ya, cuma dipanasi dengan nyala api, biji popcorn dalam wadah meletup dan loncat-loncat sendiri. Saking senangnya, penutup wadah jadi korban kenakalan mereka mengapa bisa terjadi seperti itu ?
Proses Termodinamika
Dalam postingan sebelumnya, gurumuda sudah menjelaskan secara panjang pendek mengenai Kalor (Q), Kerja (W), Sistem dan Lingkungan. Sebaiknya pelajari terlebih dahulu materi sebelumnya,biar dirimu nyambung dengan penjelasan gurumuda dalam pembahasan ini…
Kalor (Q) merupakan energi yang berpindah dari satu benda ke benda yang lain akibat adanya perbedaan suhu. Berkaitan dengan sistem dan lingkungan, bisa dikatakan bahwa kalor merupakan energi yang berpindah dari sistem ke lingkungan atau energi yang berpindah dari lingkungan ke sistem akibat adanya perbedaan suhu. Jika suhu sistem lebih tinggi dari suhu lingkungan, maka kalor akan mengalir dari sistem menuju lingkungan. Sebaliknya, jika suhu lingkungan lebih tinggi dari suhu sistem, maka kalor akan mengalir dari lingkungan menuju sistem.
Jika Kalor (Q) berkaitan dengan perpindahan energi akibat adanya perbedaan suhu, maka Kerja (W) berkaitan dengan perpindahan energi yang terjadi melaluicara-cara mekanis (mekanis tuh berkaitan dengan gerak)… Misalnya jika sistem melakukan kerja terhadap lingkungan, maka energi dengan sendirinya akan berpindah dari sistem menuju lingkungan. Sebaliknya jika lingkungan melakukan kerja terhadap sistem, maka energi akan berpindah dari lingkungan menuju sistem.
Salah satu contoh sederhana berkaitan dengan perpindahan energi antara sistem dan lingkungan yang melibatkan Kalor dan Kerja adalah proses pembuatanpopcorn. Dirimu ngerti popcorn tidak ? biji jagung yang ada bunganya Gurumuda kurang ngerti proses pembuatan popcorn secara mendetail. Btw, garis besarnya seperti ini… Biasanya popcorn dimasukkan ke dalam wadah tertutup (panci atau alat masak lainnya). Selanjutnya, wadah tertutup tersebut dipanasi dengan nyala api kompor. Adanya tambahan kalor dari nyala api membuat bijipopcorn dalam panci kepanasan dan meletup. Ketika meletup, biasanya biji popcorn berjingkrak-jingkrak dalam panci dan mendorong penutup panci. Gaya dorong biji popcorn cukup besar sehingga kadang tutup panci bisa berguling ria… Untuk kasus ini, kita bisa menganggap popcorn sebagai sistem, panci sebagai pembatas dan udara luar, nyala api dkk sebagai lingkungan. Karena terdapat perbedaan suhu, maka kalor mengalir dari lingkungan (nyala api) menuju sistem (bijipopcorn). Adanya tambahan kalor menyebabkan sistem (biji popcorn) memuai dan meletup sehingga mendorong penutup panci (si biji popcorn tadi melakukan kerja terhadap lingkungan). Dalam proses ini, keadaan popcorn berubah. Keadaan popcorn berubah karena suhu, tekanan dan volume popcorn berubah saat memuai dan meletup… meletupnya popcorn hanya merupakan salah satu contoh perubahan keadaan sistem akibat adanya perpindahan energi antara sistem dan lingkungan. Masih sangat banyak contoh lain, sebagiannya sudah gurumuda ulas pada bagian pengantar… Perubahan keadaan sistem akibat adanya perpindahan energi antara sistem dan lingkungan yang melibatkan Kalor dan Kerja, disebut sebagai proses termodinamika.
Energi dalam dan Hukum Pertama Termodinamika
Pada postingan sebelumnya, gurumuda sudah menjelaskan secara singkat mengenai energi dalam (U). Energi dalam sistem merupakan jumlah seluruh energi kinetik molekul sistem, ditambah jumlah seluruh energi potensial yang timbul akibat adanya interaksi antara molekul sistem. Kita berharap bahwa jika kalor mengalir dari lingkungan menuju sistem (sistem menerima energi), energi dalam sistem akan bertambah… Sebaliknya, jika sistem melakukan kerja terhadap lingkungan (sistem melepaskan energi), energi dalam sistem akan berkurang…
Dengan demikian, dari kekekalan energi, kita bisa menyimpulkan bahwa perubahan energi dalam sistem = Kalor yang ditambahkan pada sistem (sistem menerima energi) – Kerja yang dilakukan oleh sistem (sistem melepaskan energi). Secara matematis, bisa ditulis seperti ini :
Keterangan :
delta U = Perubahan energi dalam
Q = Kalor
W = Kerja
Persamaan ini berlaku untuk sistem tertutup (Sistem tertutup merupakan sistem yang hanya memungkinkan pertukaran energi antara sistem dengan lingkungan). Untuk sistem tertutup yang terisolasi, tidak ada energi yang masuk atau keluar dari sistem, karenanya, perubahan energi dalam = 0. Persamaan ini juga berlaku untuk sistem terbuka jika kita memperhitungkan perubahan energi dalam sistem akibat adanya penambahan dan pengurangan jumlah zat (Sistem terbuka merupakan sistem yang memungkinkan terjadinya pertukaran materi dan energi antara sistem tersebut dengan lingkungan). Mengenai sistem terbuka dan tertutup telah gurumuda jelaskan pada postingan sebelumnya…
Hukum pertama termodinamika merupakan pernyataan Hukum Kekekalan Energi dan ketepatannya telah dibuktikan melalui banyak percobaan (seperti percobaan om Jimi Joule). Perlu diketahui bahwa hukum ini dirumuskan pada abad kesembilan belas, setelah kalor dipahami sebagai energi yang berpindah akibat adanya perbedaan suhu.
Energi dalam merupakan besaran yang menyatakan keadaan mikroskopis sistem. Besaran yang menyatakan keadaan mikroskopis sistem (energi dalam) tidak bisa diketahui secara langsung. Yang kita analisis dalam persamaan Hukum Pertama Termodinamika hanya perubahan energi dalam saja. Perubahan energi dalam bisa diketahui akibat adanya energi yang ditambahkan pada sistem dan energi yang dilepaskan sistem dalam bentuk kalor dan kerja. Jika besaran yang menyatakan keadaan mikroskopis sistem (energi dalam) tidak bisa diketahui secara langsung, maka besaran yang menyatakan keadaan makroskopis bisa diketahui secara langsung. Besaran yang menyatakan keadaan makroskopis adalah suhu (T), tekanan (p), volume (V) dan massa (m) atau jumlah mol (n). Ingat ya, Kalor dan Kerja hanya terlibat dalam proses perpindahan energi antara sistem dan lingkungan. Kalor dan Kerja bukan merupakan besaran yang menyatakan keadaan sistem.
Aturan tanda untuk Kalor (Q) dan Kerja (W)
Aturan tanda untuk Kalor dan Kerja disesuaikan dengan persamaan Hukum Pertama Termodinamika. Kalor (Q) dalam persamaan di atas merupakan kalor yang ditambahkan pada sistem (Q positif), sedangkan Kerja (W) pada persamaan di atas merupakan kerja yang dilakukan oleh sistem (W positif). Karenanya, jika kalor meninggalkan sistem, maka Q bernilai negatif. Sebaliknya, jika kerja dilakukan pada sistem, maka W bernilai negatif. Pahami perlahan-lahan….
Hukum pertama termodinamika : pernyataan kekekalan energi
Pengantar
Dalam pembahasan sebelumnya gurumuda sudah menjelaskan secara panjang pendek mengenai Hukum Pertama Termodinamika. Konon katanya, hukum pertama termodinamika merupakan pernyataan hukum kekekalan energi. Aneh ya, hukum pertama termodinamika khan hanya membahas hubungan antara kalor (Q), kerja (W) dan perubahan energi dalam (delta U). Lalu mengapa bisa disebut sebagai pernyataan hukum kekekalan energi ?
Bentuk-bentuk energi
Dalam kehidupan kita sehari-hari terdapat banyak bentuk energi. Pada pokok bahasan usaha dan energi, kita sudah berkenalan dengan dua bentuk energi mekanik, yakni energi potensial (potensial = tersimpan) dan energi kinetik (kinetik = gerak). Energi potensial terdiri dari beberapa jenis, di antaranya adalah EP gravitasi, EP elastis dan EP magnet. Energi kinetik terdiri dari dua jenis, yakni energi kinetik translasi dan energi kinetik rotasi.
Buah mangga yang lezat dan ranum memiliki energi potensial gravitasi ketika sedang menggelayut pada tangkainya. Demikian juga ketika dirimu berada pada ketinggian tertentu dari permukaan tanah, misalnya di atap rumah . Energi potensial gravitasi dimiliki benda karena posisi relatifnya terhadap bumi. Karet ketapel yang kita regangkan memiliki energi potensial elastis. Karet ketapel dapat melontarkan batu karena adanya energi potensial elastis pada karet yang diregangkan. Demikian juga busur yang ditarik oleh pemanah dapat menggerakan anak panah, karena terdapat energi potensial elastis pada busur yang diregangkan. Benda yang berada di dekatmagnet memiliki energi potensial magnet. Ketika kita melepaskan benda yang kita pegang (paku, misalnya), dalam waktu singkat paku akan bergerak menuju magnet.
Selain energi potensial dan energi kinetik yang dimiliki materi yang berukuran besar dan sering kita lihat dalam kehidupan sehari-hari, terdapat juga bentuk energi yang lain. Ada energi listrik, energi nuklir, energi kimia, etc… setelah muncul teori kinetik, dikatakan bahwa energi dalam bentuk lain tersebut (energi listrik, energi kimia, dkk) merupakan energi kinetik atau energi potensial pada tingkat atom atau molekul. Energi kimia yang tersimpan dalam makanan dan bahan bakar dianggap sebagai energi potensial yang tersimpan dalam molekul, akibat adanya gaya listrik antara atom penyusun molekul (disebut juga sebagai ikatan kimia). Energi listrik, energi magnetik, energi nuklir juga dapat diangap sebagai energi kinetik atau energi potensial dalam skala atomik. Mengenai hal ini akan dibahas secara lengkap dalam episode berikutnya…
Perubahan bentuk energi
Perlu diketahui bahwa energi dapat berubah dari satu bentuk ke bentuk lain. Pada tingkat makroskopis, kita bisa menemukan begitu banyak contoh perubahan bentuk energi. Buah mangga yang menggelayut di tangkainya memiliki energi potensial gravitasi. Pada saat buah mangga jatuh ke tanah, energi potensialnya berkurang sepanjang lintasan geraknya menuju tanah. Ketika mulai jatuh, energi potensial berkurang karena jarak vertikal buah mangga dari tanah makin kecil. EP tersebut berubah bentuk menjadi energi kinetik translasi karena kecepatan buah mangga bertambah akibat percepatan gravitasi yang bernilai konstan. Energi potensial elastis yang tersimpan pada ketapel yang diregangkan dapat berubah menjadi energi kinetik translasi batu apabila ketapel kita lepas… busur yang melengkung juga memiliki energi potensial elastis. Energi potensial elastis pada busur yang melengkung dapat berubah menjadi energi kinetik translasi anak panah. Pada tingkat mikroskopis, kita juga bisa menemukan contoh perubahan bentuk energi. Ketika dirimu menyalakan lampu neon, pada saat yang sama terjadi perubahan energi listrik menjadi energi cahaya. Contoh lain adalah perubahan energi listrik menjadi energi gerak (kipas angin) dll. Proses perubahan bentuk energi listrik ini sebenarnya disebabkan oleh adanya perubahan antara energi potensial dan energi kinetik pada tingkat atom atau molekul.
Perubahan bentuk energi biasanya
melibatkan perpindahan energi dari satu benda ke benda lain
Perubahan bentuk energi biasanya melibatkan perpindahan energi dari satu benda ke benda lainnya. Busur yang melengkung memiliki energi potensial elastis. Ketika busur dilepaskan, energi potensial elastis busur berubah bentuk menjadi energi kinetik translasi anak panah. Pada saat yang sama, energi berpindah dari busur menuju anak panah. Ketika dirimu mendorong sepeda motor yang lagi mogok, energi potensial kimia dalam tubuhmu berubah bentuk menjadi energi kinetik translasi sepeda motor. Pada saat yang sama, energi berpindah dari dirimu menuju sepeda motor. Air di bagian atas bendungan memiliki energi potensial gravitasi. Ketika si air jatuh, energi potensial gravitasi air berubah menjadi energi kinetik translasi air. Selanjutnya air yang jatuh tadi menggerakan turbin. Ketikasi air menggerakan turbin, energi kinetik translasi air berubah menjadi energi kinetik rotasi turbin. Pada saat yang sama, energi berpindah dari air menuju turbin.
Kerja selalu dilakukan ketika terjadi perpindahan energi
Pada masing-masing contoh yang telah gurumuda ulas sebelumnya, tampak bahwa perpindahan energi selalu disertai dengan adanya usaha alias kerja (Work). Ketika energi berpindah dari busur menuju anak panah, si busur melakukan kerja pada anak panah. Ketika energi berpindah dari dirimu menuju sepeda motor, dirimu melakukan kerja pada sepeda motor. Ketika energi berpindah dari air menuju turbin, air melakukan kerja pada turbin. Seandainya tidak ada kerja yang dilakukan, tidak mungkin anak panah bergerak ketika busur dilepaskan, sepeda motor butut yang lagi mogok juga tidak mungkin bergerak ketika didorong. Demikian juga dengan turbin. Tapi kenyataannya anak panah, sepeda motor mogok dan turbin bergerak. Dari kenyataan ini, bisa disimpulkan bahwa usaha alias kerja (W) selalu dilakukan ketika energi berpindah dari satu benda ke benda yang lainnya.
Walaupun sudah mengetahui dan meyadari sepenuh hati bahwa si energi selalu berubah bentuk dan bergentayangan dari satu benda ke benda yang lain, tetapi om-om ilmuwan belum bisa menyimpulkan bahwa energi itu kekal. Mereka macet ketika berhadapan dengan kalor alias panas. Biasanya kalor alias panas selalu muncul akibat adanya gesekan… Misalnya dirimu mendorong sebuah balok yang berada di atas lantai. Ketika mendorong balok, energi potensial kimia dalam tubuhmu berubah bentuk menjadi energi kinetik translasi balok. Pada saat yang sama, energi berpindah dari dirimu menuju balok. Ketika energi berpindah dari dirimu menuju balok, dirimu melakukan kerja pada balok (W = Fs). Tentu saja si balok bergerak… Nah, setelah bergerak, balok biasanya berhenti… Balok berhenti akibat adanya gaya gesekan. Di mana ada gesekan, di situ ada kalor alias panas… coba gosokan/gesekan kedua telapak tanganmu. Kedua telapak tanganmu terasa panas khan ? hal yang sama terjadi pada balok. Permukaan lantai dan alas balok menjadi panas akibat adanya gesekan. Gesekan ini yang bikin si balok berhenti jalan-jalan. Gaya gesekan disebut juga sebagai gaya disipatif, karena gaya gesekan memperkecil atau melenyapkan energi mekanik total (energi mekanik = energi potensial + energi kinetik). Untuk kasus ini, gaya gesekan melenyapkan energi kinetik translasi balok. Energi kinetik balok berasal dari energi potensial kimia.
Kalau balok berhenti bergerak (v = 0), berarti energi kinetiknya lenyap dunk (EK = ½ mv2 = 0). Energi kinetik translasi tadi kabur ke mana ? Kesimpulan sementara : energi tidak kekal.
Kalor alias panas = ?
Perlu diketahui bahwa sebelum abad kesembilan belas, tidak seorang ilmuwan pun yang tahu kalor alias panas itu sebenarnya apa… Seperti biasa, di mana ada kebuntuan dalam ilmu fisika, di situ muncul teori baru. Muncul sebuah teori yang mengatakan bahwa kalor alias panas itu sejenis zat tertentu (zat tersebut dijuluki caloric). Btw, keberadaan zat yang punya nama samaran caloric ini tidak bisa dibuktikan. Mulai akhir tahun 1830 (abad kesembilanbelas), om James Joule (1818-1889) dan teman-temannya dalam pasukan ilmuwan kelas kakap mulai memainkan alat peraganya Berdasarkan eksperimen yang dilakukannya, om Jimi menemukan bahwa energi kinetik yang hilang selalu sama dengan kalor alias panas yang dihasilkan. Kalor maupun energi kinetik tidak ada yang bersifat kekal secara terpisah. Yang selalu kekal adalah jumlah total energi kinetik dan kalor… Salah satu eksperimen yang dilakukan oleh om Jimi Joule sudah gurumuda jelaskan pada pokok bahasan sebelumnya. Berdasarkan hasil eksperimen yang diperolehnya, om Jimi Joule membuat perbandingan dengan perpindahan kalor yang biasa terjadi antara benda bersuhu tinggi (benda panas) dengan benda bersuhu rendah (benda dingin). Om Jimi Joule kemudian menyimpulkan bahwa kalor alias panas merupakan energi yang berpindah akibat adanya perbedaan suhu. Ini adalah pengertian kalor dari sudut pandang makroskopis. Dari sudut pandang mikroskopis, kita bisa menjelaskan kalor menggunakan teori kinetik. Dalam pokok bahasan teori kinetik gas, kita belajar bahwa suhu suatu benda merupakan ukuran dari energi kinetik molekul-molekul penyusun benda tersebut. Semakin tinggi suhu benda, semakin besar energi kinetik molekul-molekul penyusun benda. Energi kinetik berkaitan dengan kecepatan gerak. Semakin besar energi kinetik (EK besar) molekul-molekul, semakin besar kecepatan gerak (v besar) molekul-molekul. Nah, apabila kita menyentuhkan benda yang bersuhu tinggi (benda panas) dengan benda yang bersuhu rendah (benda dingin), secara otomatis kalor mengalir dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Adanya tambahan kalor menyebabkan benda yang dingin bertambah panas… Ketika bertambah panas (suhu benda meningkat), energi kinetik molekul-molekul penyusun benda tentu saja semakin besar (kecepatan gerak molekul makin besar). Dengan demikian, kita bisa menyimpulkan bahwa kalor alias panas sebenarnya merupakan energi kinetik molekul-molekul yang bergerak cepat…
Setelah mengetahui bahwa kalor alias panas merupakan energi yang berpindah akibat adanya perbedaan suhu (pengertian makroskopis) atau kalor merupakan energi kinetik molekul-molekul yang bergerak cepat (pengertian mikroskopis), akhirnya para ilmuwan dengan penuh semangat merumuskan hukum kekekalan energi.
Energi dapat berubah dari satu bentuk ke bentuk lain, berpindah dari satu benda ke benda yang lain, tetapi energi total tidak pernah berkurang atau bertambah. Istilah gaulnya, energi selalu kekal… Ini adalah pernyataan hukum kekekalan energi. Jangan pake hafal…
Terus hubungannya sama hukum pertama termodinamika gmn sich ? hubungan mereka baik2 saja… hiks2…
Sebelumnya sudah dijelaskan bahwa perubahan bentuk energi biasanya melibatkan perpindahan energi dari satu benda ke benda lainnya. Setiap perpindahan energi selalu disertai dengan adanya usaha alias kerja (Work). Dari hasil eksperimen dan analisis para ilmuwan, diketahui bahwa kalor sebenarnya merupakan energi yang berpindah akibat adanya perbedaan suhu (pengertian makroskopis) atau kalor merupakan energi kinetik molekul-molekul yang bergerak cepat (pengertian mikroskopis). Kita bisa mengatakan bahwa kerja (W) dan kalor (Q) terlibat dalam perpindahan energi. Hukum pertama termodinamika yang sudah kita pelajari dalam pokok bahasan sebelumnya merupakan hukum yang menjelaskan perpindahan energi yang melibatkan kalor dan kerja. Ingat ya, kalor dan kerja bukan suatu bentuk energi. Kalor dan kerja hanya terlibat dalam perpindahan energi antara benda dengan benda, antara benda dengan makhluk hidup atau antara makhluk hidup dengan makhluk hidup…
Dalam hukum pertama termodinamika, kita berkenalan dengan sebuah besaran baru, yakni energi dalam (U). Energi dalam merupakan jumlah total energi kinetik molekul-molekul dan energi potensial yang timbul akibat adanya interaksi antara atom-atom penyusun molekul atau interaksi antara molekul-molekul penyusun suatu benda atau makhluk hidup… Setiap benda tersusun dari atom-atom atau molekul-molekul. Dengan demikian, setiap benda yang ada di alam semesta ini pasti punya energi dalam. Setiap proses perpindahan energi yang melibatkan Kalor dan Kerja akan mengakibatkan perubahan energi dalam. Hal ini yang kita bahas dalam hukum pertama termodinamika. Jadi dirimu jangan pake heran kalau ada orang yang mengatakan bahwa hukum pertama termodinamika = hukum kekekalan energi. Mudah-mudahan penjelasan panjang pendek dan bertele-tele sebelumnya membantumu memahami hal ini… Jika bingung berlanjut, silahkan hubungi dokter terjauh
Perlu diketahui bahwa istilah sistem dan lingkungan yang kita pakai dalam termodinamika sebenarnya hanya membantu analisa kita saja… Pada dasarnya energi berpindah dari satu benda ke benda lain, dari satu makhluk hidup ke makhluk hidup lain. Tapi alangkah baiknya jika kita batasi saja hal-hal yang mau kita selidiki dan hal-hal lain yang tidak kita selidiki. Kita menyebut benda-benda yang diselidiki sebagai sistem, sedangkan benda yang lain kita beri julukan lingkungan… Sekian dan sampai jumpa lagi pada episode berikutnya…
Hukum kedua termodinamika (Pernyataan khusus)
Pengantar
Katanya stok minyak bumi dalam perut bumi sekarang tinggal sedikit, karenanya kita diminta untuk menghemat energi. Aneh ya… Menurut hukum pertama termodinamika, dalam suatu sistem tertutup (alam semesta kita termasuk sistem tertutup), jumlah energi total selalu kekal. Energi dapat berubah bentuk dan berpindah dari satu benda ke benda yang lain, tetapi jumlah energi total selalu tetap. Kalau energi selalu kekal, mengapa kita harus menghemat energi ?
Benar bahwa hukum pertama termodinamika mengatakan kepada kita bahwa energi selalu kekal. Walaupun demikian, hukum pertama termodinamika tidak menjelaskan kepada kita bahwa ada bentuk energi yang berguna, sedangkan ada bentuk energi yang tidak berguna… Energi potensial kimia dalam minyak bumi merupakan salah satu bentuk energi yang berguna. Energi potensial kimia dalam minyak bumi (bensi, solar, minyak tanah, etc) bisa kita gunakan untuk menggerakkan kendaraan, memasak makanan atau bisa juga digunakan untuk membangkitkan listrik. Energi potensial gravitasi air di waduk bisakita gunakan untuk membangkitkan listrik. Energi panas bumi juga bisa kita gunakan untuk membangkitkan listrik. Energi kinetik angin, energi panas matahari, energi nuklir dkk… Mengenai sumber energi akan dibahas dalam episode berikutnya…
Ketika energi yang berguna tersebut kita manfaatkan, akan terjadi perubahan bentuk energi. Jika digunakan untuk menggerakkan kendaraan, energi potensial kimia dalam minyak bumi akan berubah bentuk menjadi energi kinetik kendaraan + kalor alias panas (panas timbul akibat adanya gesekan). Jika digunakan untuk membangkitkan listrik, energi potensial gravitasi pada air di waduk akan berubah bentuk menjadi energi kinetik rotasi turbin. Energi kinetik rotasi turbin akan berubah bentuk menjadi energi listrik. Energi listrik akan berubah bentuk menjadi energi kinetik rotasi (kipas angin), energi cahaya (lampu), kalor alias panas (setrika listrik) dkk… Energi kinetik rotasi kipas akan berubah bentuk menjadi energi dalam udara + kalor alias panas (panas timbul akibat adanya gesekan pada kipas). Energi potensial gravitasi pada buah mangga akan berubah bentuk menjadi energi kinetik translasi apabila buah mangga tersebut jatuh ke tanah. Ketika mencium tanah, energi kinetik translasi buah mangga akan berubah bentuk menjadi energi dalam buah mangga tersebut + energi dalam tanah.Dari beberapa contoh perubahan bentuk energi ini, tampak bahwa hukum pertama termodinamika baik adanya… Btw, sangat banyak proses di alam semestayang kita harapkan dapat mengubah bentuk energi tetapi kenyataannya tidak pernah terjadi… Apakah dirimu pernah melihat yang sebaliknya – buah mangga yang sedang diam di tanah tiba-tiba bergerak ke atas karena energi dalam berubah bentuk menjadi energi kinetik ? Seandainya energi dalam berubah menjadi energi kinetik sehingga buah mangga meluncur ke atas, hukum pertama termodinamika tidak pernah dilanggar. Energi akan selalu kekal dalam proses tersebut… tapi kenyataanya buah mangga tidak pernah meluncur ke atas dengan sendirinya…
Semua proses yang terjadi secara alami hanya berlangsung pada satu arah saja tapi tidak dapat berlangsung pada arah sebaliknya (biasa disebut sebagai proses ireversibel alias tidak dapat balik). Setelah terlepasdari tangkainya dan jatuh bebas hingga mencium tanah, buah mangga tidak pernah meluncur ke atas lagi. Buku yang kita dorong lalu berhenti tidak pernah bergerak kembali ke arah kita. Kalau kita menyentuhkan benda yang bersuhu tinggi (benda panas) dengan benda yang bersuhu rendah (benda dingin), kalor alias panas dengan sendirinya mengalir dari benda bersuhu tinggi menuju benda yang bersuhu rendah. Kita tidak pernah melihat proses sebaliknya, di mana kalor dengan sendirinya berpindah dari benda dingin menuju benda panas. Jika proses ini terjadi, maka benda yang dingin akan bertambah dingin, sedangkan benda yang panas akan bertambah panas. Tapi kenyataannya tidak seperti itu… Terdapat banyak proses ireversibel yang tampaknya berbeda satu sama lain, tapi semuanya berkaitan dengan perubahan bentuk energi dan perpindahan energi dari satu benda ke benda lain. Misalnya ada gempa bumi dasyat sehingga bangunan-bangunan pada roboh (bangunan roboh akibat adanya energi yang dibawa oleh gelombang gempa). Apakah dirimu pernah melihat setiap bagian bangunan yang roboh tersebut ngumpul lagi dan berdiri tegak seperti semula ? Atau misalnya adikmu yang sangat nakal menjatuhkan sebuah gelas ke lantai hingga pecah… Apakah dirimu pernah melihat serpihan-serpihan gelas yang tercecer di lantai ngumpul lagi dan membentuk gelas hingga utuh seperti semula ? Tidak pernah terjadi… masih sangat banyak contohlain. Sisanya dipikirkan sendiri ya… Semua proses ireversibel tersebut kelihatannya sangat sepele sehingga kadang luput dari perhatian kita. Btw, kesimpulan akhir-nya bikin diriku ketakutan Mengenai hal ini akan gurumuda bahas pada episode berikutnya (Entropi dan hukum kedua termodinamika – pernyataan umum). Terlebih dahulukita kupas tuntas beberapa pernyataan khusus dari hukum kedua termodinamika…
Untuk menjelaskan proses termodinamika yang hanya terjadi pada satu arah (proses ireversibel), para ilmuwan merumuskan hukum kedua termodinamika. Hukum kedua termodinamika menjelaskan proses apa sajayang bisa terjadi di alam semesta dan proses apa saja yang tidak bisa terjadi. Salah seorang ilmuwan yang bernama R. J. E. Clausius (1822-1888) membuat sebuah pernyataan berikut :
Kalor berpindah dengan sendirinya dari benda bersuhu tinggi ke benda bersuhu rendah; kalor tidak akan berpindah dengan sendirinya dari benda bersuhu rendah ke benda bersuhu tinggi (Hukum kedua termodinamika – pernyataan Clausius).
Pernyataan eyang butut Clausius merupakan salah satu pernyataan khusus hukum kedua termodinamika. Disebut pernyataan khusus karena hanya berlaku untuk satu proses saja (berkaitan dengan perpindahan kalor). Karena pernyataan ini tidak berkaitan dengan proses lainnya, maka kita membutuhkan pernyataan yang lebih umum. Perkembangan pernyataan umum hukum kedua termodinamika sebagiannya didasarkan pada studi tentang mesin kalor. Karenanya terlebih dahulukita bahas mesin kalor…
MESIN KALOR (heat engine)
Pada dasarnya setiap manusia, baik diriku, dirimu dan dirinya menginginkan kehidupan yang lebih nyaman dan mudah. Untuk melakukan kerja, biasanya kita memanfaatkan kekuatan otot. Btw, kekuatan otot kita sangat terbatas, karenanya kita ingin membuat alat yang bisa menggantikan atau mengurangi beban kerja otot. Misalnya dirimu sekarang tinggal di jakarta. Waktu liburan, dirimu ingin jalan-jalan ke surabaya… Apakah dirimu bisa jalan kakidari jakarta menuju surabaya ? bisa si bisa, tapi kakimu akan kejang-kejang di sepanjang jalan Sudah gitu, berbulan-bulan baru dirimu tiba di surabaya. Syukur kalau tiba dengan selamat. Perjalanan yang jauh bisa ditempuh dengan mudah jika kita bisa membuat alat transportasi alias kendaraan. Kendaraan bisa bergerak kalau ada energi kinetik. Btw, kendaraan tidak mungkin bergerak dengan sendirinya karena tiba-tiba ia punya energi kinetik.
Contohnya batu. Batu tidak bisa bergerak dengan sendirinya karena tiba-tiba saja ia punya energi kinetik. Batu bisa bergerak kalau dirimu lempar. Ketika melempar batu, energi potensial kimia dalam tubuhmu berubah menjadi energi kinetik batu. Anak panah tidak mungkin tiba-tiba saja bergerak dengan sendirinya karena ia punya energi kinetik. Anak panah bisa bergerak karena tarikan busur dilepas. Ketika tarikan busur dilepas, energi potensial elastis busur berubah menjadi energi kinetik anak panah. Energi potensial elastis busur berasaldari energi potensial kimia orang yang memanah… Demikian halnya dengan kendaraan yang selalu kita gunakan, seperti mobil, sepeda motor, pesawat, bajaj, kereta api… Agar bisa bergerak maka kendaraan harus punya energi kinetik. Nah, energi kinetik kendaraan tidak mungkin muncul dengan sendirinya…Kita membutuhkan energi lain yang bisa diubah menjadi energi kinetik kendaraan. Ini hanya salah satu contoh saja…
Hampir semua energi yang kita gunakan berasal dari energi potensial kimia yang terkandung dalam minyak bumi, gas, batu bara. Btw, energi potensial kimia yang terkandung dalam minyak bumi, gas atau batu bara tidak bisa langsung digunakan. Minyak bumi, gas atau batu bara harus dibakar terlebih dahulu… Karena harus pake bakar segala, maka minyak bumi dkk biasa disebut sebagai bahan bakar. Lebih tepatnya bahan bakar fosil karena minyak bumi, gas dan batu bara berasal dari fosil makhluk hidup, baik tumbuhan atau hewan yang sudah mati dan membusuk dalam perut bumi selama beribu-ribu atau berjuta-juta tahun. Hewan atau tumbuhan punya energi potensial kimia juga. Setelah mati dan mengendap selama ribuan atau jutaan tahun, energi potensial kimia hewan atau tumbuhan berubah menjadi energi potensial kimia bahan bakar fosil…
Biasanya hasil pembakaran bahan bakar fosil (minyak bumi, gas dan batu bara) menghasilkan kalor alias panas… Kalor bisa kita gunakan secara langsung untuk memasak makanan, memanaskan ruangan. Untuk menggerakan sesuatu (misalnya menggerakkan kendaraan), kita harus mengubah kalor menjadi energi kinetik atau energi mekanik (energi mekanik = energi potensial + energi kinetik). Mengubah energi mekanik menjadi kalor adalah pekerjaan yang sangat mudah, tetapi mengubah kalor menjadi energi mekanik adalah pekerjaan sulit. Coba gosokan kedua telapak tanganmu… telapak tanganmu kepanasan khan ? Ketika kita menggosok kedua telapak tangan (kita melakukan usaha alias kerja), energi mekanik berubah menjadi kalor. Prosesnya sangat mudah… Bahkan kalor yang tak terbatas bisa dihasilkan dengan melakukan kerja. Tapi proses sebaliknya, yakni memanfaatkan kalor untuk melakukan kerja adalah pekerjaan yang sulit.
Alat yang digunakan untuk memanfaatkan kalor untuk melakukan kerja baru ditemukan pada tahun 1700. Alat yang dimaksud adalah mesin uap. Mesin uap pertama kali digunakan untuk memompa air keluar dari tambang batu bara. Perlu diketahui bahwa penggunaan mesin uap pertama terjadi sebelum para ilmuwan mengetahui bahwa kalor sebenarnya merupakan energi yang berpindah akibat adanya perbedaan suhu (hukum pertama termodinamika belum dirumuskan). Penggunaan mesin uap waktu itu mungkin didasarkan pada pengalaman sehari-hari yang menunjukkan bahwa uap bisa menggerakkan sesuatu (misalnya uap air menendang-nendang tutup panci). Mesin uap termasuk mesin kalor (mesin kalor = alat yang mengubah kalor menjadi energi mekanik). Sekarang mesin uap digunakan untuk membangkitkan energi listrik… Mesin kalor modern adalah mesin pembakaran dalam (mesin mobil, mesin sepeda motor dkk).
Gagasan dasar dibalik penggunaan mesin kalor adalah bahwa kalor bisa diubah menjadi energi mekanik hanya jika kalor dibiarkan mengalir dari tempat bersuhu tinggi menuju tempat bersuhu rendah. Selama proses ini, sebagian kalor diubah menjadi energi mekanik (sebagian kalor digunakan untuk melakukan kerja), sebagian kalor dibuang pada tempat yang bersuhu rendah. Proses perubahan bentuk energi dan perpindahan energi pada mesin kalor tampak seperti diagram di bawah…
Amati diagram di atas… Suhu tinggi (TH) dan suhu rendah (TL) dikenal juga dengan julukan suhu operasi mesin (suhu = temperatur). Kalor yang mengalir dari tempat bersuhu tinggi diberi simbol QH, sedangkan kalor yang dibuang ke tempat bersuhu rendah diberi simbol QL. Ketika mengalir dari tempat bersuhu tinggi menuju tempat bersuhu rendah, sebagian QH diubah menjadi energi mekanik (digunakan untuk melakukan kerja/W), sebagian lagi dibuang sebagai QL. Sebenarnya kita sangat mengharapkan bahwa semua QH bisa diubah menjadi W, tapi pengalaman sehari-hari menunjukkan bahwa hal tersebut tidak mungkin terjadi. Selalu saja ada kalor yang terbuang. Dengan demikian, berdasarkan kekekalan energi, bisa disimpulkan bahwa QH = W + QL.
Sekarang mari kita tinjau mesin kalor yang biasa digunakan untuk mengubah kalor menjadi energi mekanik. Perlu diketahui bahwa kita hanya meninjau mesin kalor yang melakukan kerja secara terus menerus. Agar kerja bisa dilakukan secara terus menerus maka kalor harus mengalir secara terus menerus dari tempat bersuhu tinggi menuju tempat bersuhu rendah. Jika kalor hanya mengalir sekali saja maka kerja yang dilakukan mesin kalor juga hanya sekali saja (energi mekanik yang dihasilkan sangat sedikit). Dengan demikian mesin kalor tersebut tidak bisa kita manfaatkan secara optimal. Mesin kalor bisa dimanfaatkan secara optimal jika ia melakukan kerja secara terus menerus. Dengan kata lain, stok energi mekanik yang dihasilkan mesin kalor cukup banyak sehingga bisa kita gunakan untuk menggerakkan sesuatu. Daripada kelamaan dan jadi basi, lebih baik kita langsung menuju ke sasaran… Sekarang siapkan sapu tangan atau sapi kaki sebanyak-banyaknya sebelum si mesin kalor bikin dirimu kepanasan Terlebih dahulu kita tinjau mesin uap. Mesin pembakaran dalam akan dibahas kemudian…
Mesin Uap
Mesin uap menggunakan uap air sebagai media penghantar kalor. Uap biasa disebut sebagai zat kerja mesin uap. Terdapat dua jenis mesin uap, yakni mesin uap tipe bolak balik dan mesin uap turbin (turbin uap). Rancangan alatnya sedikit berbeda tetapi kedua jenis mesin uap ini mempunyai kesamaan, yakni menggunakan uap yang dipanaskan oleh pembakaran minyak, gas, batu bara atau menggunakan energi nuklir.
Mesin uap tipe bolak balik
Tataplah gambar kusam di bawah dengan penuh kelembutan…
Air dalam wadah biasanya dipanaskan pada tekanan yang tinggi. Karena dipanaskan pada tekanan yang tinggi maka proses pendidihan air terjadi pada suhu yang tinggi (ingat pembahasan mengenai pendidihan – Teori kinetik gas). Biasanya air mendidih (air mendidih = air berubah menjadi uap) sekitar suhu 500 oC. Suhu berbanding lurus dengan tekanan. Semakin tinggi suhu uap, semakin besar tekanan uap. Uap bersuhu tinggi atau uap bertekanan tinggi tersebut bergerak melewati katup masukan dan memuai terhadap piston. Ketika memuai, uap mendorong piston sehingga piston meluncur ke kanan. Dalam hal ini, sebagian kalor alias panas pada uap berubah menjadi energi kinetik (uap melakukan kerja terhadap piston — W = Fs). Pada saat piston bergerak ke kanan, roda yang dihubungkan dengan piston berputar (1). Setelah melakukan setengah putaran, roda menekan piston kembali ke posisinya semula (2). Ketika piston bergerak ke kiri, katup masukan dengan sendirinya tertutup, sebaliknya katup pembuangan dengan sendirinya terbuka. Uap tersebut dikondensasi oleh kondensor sehingga berubah menjadi embun (embun = air yang berasal dari uap). Selanjutnya, air yang ada di dalam kondensor dipompa kembali ke wadah untuk dididihkan lagi. Demikian seterusnya… Karena prosesnya terjadi secara berulang-ulang maka piston bergerak ke kanan dan ke kiri secara terus menerus. Karena piston bergerak ke kanan dan ke kiri secara terus menerus maka roda pun berputar secara terus menerus. Putaran roda biasanya digunakan untuk menggerakan sesuatu…
Proses perubahan bentuk energi dan perpindahan energi pada mesin uap tipe bolak balik di atas bisa dijelaskan seperti ini : Bahan bakar fosil (batu bara/minyak/gas) memiliki energi potensial kimia. Ketika bahan bakar fosil dibakar, energi potensial kimia berubah bentuk menjadi kalor alias panas. Kalor alias panas yang diperoleh dari hasil pembakaran bahan bakar fosil digunakan untuk memanaskan air (kalor berpindah menuju air dan uap). Selanjutnya sebagian kalor pada uap berubah bentuk menjadi energi kinetik translasi piston, sebagian lagi diubah menjadi energi dalam air. Sebagian besar energi kinetik translasi piston berubah menjadi energi kinetik rotasi roda pemutar, sebagian kecil berubah menjadi kalor alias panas (kalor alias panas timbul akibat adanya gesekan antara piston dengan silinder). Jika digunakan untuk membangkitkan listrik maka energi kinetik rotasi roda pemutar bentuk menjadi energi listrik. Dan seterusnya…
Turbin uap
Pada dasarnya prinsip kerja turbin uap sama dengan mesin uap tipe bolak balik. Bedanya mesin uap tipe bolak balik menggunakan piston, sedangkan turbin uap menggunakan turbin. Pada mesin uap tipe bolak balik, kalor diubah terlebih dahulu menjadi energi kinetik translasi piston. Setelah itu energi kinetik translasi piston diubah menjadi energi kinetik rotasi roda pemutar. Nah, pada turbin uap, kalor langsung diubah menjadi energi kinetik rotasi turbin… Turbin bisa berputar akibat adanya perbedaan tekanan. Suhu uap sebelah atas bilah jauh lebih besar daripada suhu uap sebelah bawah bilah (bilah tuh lempeng tipis yang ada di tengah turbin). Ingat ya, suhu berbading lurus dengan tekanan. Karena suhu uap pada sebelah atas bilah lebih besar dari suhu uap pada sebelah bawah bilah maka tekanan uap pada sebelah atas bilah lebih besar daripada tekanan uap pada sebelah bawah bilah. Adanya perbedaan tekanan menyebabkan si uap mendorong bilah ke bawah sehingga turbin berputar. Arah putaran turbin tampak seperti gambar di bawah…
Perlu diketahui bahwa prinsip kerja mesin uap didasarkan pada diagram perpindahan energi yang telah dijelaskan di atas. Dalam hal ini, energi mekanik bisa dihasilkan apabila kita membiarkan kalor mengalir dari benda atau tempat bersuhu tinggi menuju benda atau tempat bersuhu rendah. Dengan demikian, perbedaan suhu sangat diperlukan pada mesin uap.
Btw, apabila dirimu perhatikan cara kerja mesin uap tipe bolak balik, tampak bahwa piston tetap bisa bergerak ke kanan dan ke kiri walaupun tidak ada perbedaan suhu (tidak ada kondensor dan pompa). Piston bisa bergerak ke kanan akibat adanya pemuaian uap bersuhu tinggi atau uap bertekanan tinggi. Dalam hal ini, sebagian kalor pada uap berubah menjadi energi kinetik translasi piston. Energi kinetik translasi piston kemudian berubah menjadi energi kinetik rotasi roda pemutar. Setelah melakukan setengah putaran, roda akan menekan piston kembali ke kiri. Ketika roda menekan piston kembali ke kiri, energi kinetik rotasi roda berubah lagi menjadi energi kinetik translasi piston. Ketika piston bergerak ke kiri, piston mendorong uap yang ada dalam silinder. Pada saat yang sama, katup pembuangan terbuka. Dengan demikian, uap yang didorong piston tadi akan mendorong temannya ada di sebelah bawah katup pembuangan. Nah, apabila suhu uap yang berada di sebelah bawah katup pembuangan = suhu uap yang didorong piston, maka semua energi kinetik translasi piston akan berubah lagi menjadi energi dalam uap. Energi dalam berbanding lurus dengan suhu. Kalau energi dalam uap bertambah maka suhu uap meningkat. Suhu berbanding lurus dengan tekanan. Kalau suhu uap meningkat maka tekanan uap juga meningkat. Dengan demikian, tekanan uap yang dibuang melalui katup pembuangan = tekanan uap yang masuk melalui katup masukan. Piston akan tetap bergerak ke kanan dan ke kiri seterusnya tetapi tidak akan ada energi kinetik total yang bisa dimanfaatkan (tidak ada kerja total yang dihasilkan). Jadi energi kinetik yang diterima oleh piston selama proses pemuaian (piston bergerak ke kanan) akan dikembalikan lagi kepada uap selama proses penekanan (piston bergerak ke kiri). Pahami perlahan-lahan ya…
Dari penjelasan panjang lebar dan bertele-tele sebelumnya, kita bisa menyimpulkan bahwa perbedaan suhu dalam mesin uap tetap diperlukan. Perbedaan suhu dalam mesin uap bisa diperoleh dengan memanfaatkan kondensor. Ketika suhu dan tekanan uap yang berada di sebelah bawah katup pembuangan jauh lebih kecil dari pada suhu dan tekanan uap yang berada di dalam silinder, maka ketika si piston bergerak kembali ke kiri, besarnya tekanan (P = F/A) yang dilakukan piston terhadap uap jauh lebih kecil daripada besarnya tekanan yang diberikan uap kepada piston ketika si piston bergerak ke kanan. Dengan kata lain, besarnya usaha alias kerja yang dilakukan piston terhadap uap jauh lebih kecil daripada besarnya kerja yang dilakukan uap terhadap piston (W = Fs). Jadi hanya sebagian kecil energi kinetik piston yang dikembalikan lagi pada uap. Dengan demikian akan ada energi kinetik total atau kerja total yang dihasilkan. Energi kinetik total ini yang dipakai untuk menggerakan sesuatu (membangkitkan listrik dkk…) Pembangkitan energi listrik akan dibahas secara mendalam pada pokok bahasan listrik dan magnet…
Sekarang mari kita lanjutkan perjalanan menuju mesin pembakaran dalam…
Mesin Pembakaran Dalam
Mesin sepeda motor dan mesin mobil merupakan contoh mesin pembakaran dalam. Disebut mesin pembakaran dalam karena proses pembakaran terjadi di dalam silinder tertutup. Adanya mesin pembakaran dalam merupakan hasil rekayasa konsep penekanan dan pemuaian adiabatik yang sudah gurumuda jelaskan pada pokok bahasan hukum pertama termodinamika.
Pada kesempitan ini kita hanya meninjau mesin pembakaran dalam yang menggunakan bensin dan solar sebagai bahan bakar. Bensin dan solar termasuk minyak bumi, karenanya memiliki energi potensial kimia. Energi potensial kimia dalam bensin dan solar terlebih dahulu diubah menjadi kalor alias panas melalui proses pembakaran. Selanjutnya, kalor alias panas yang diperoleh melalui hasil pembakaran diubah menjadi energi mekanik. Adanya energi mekanik ini yang menyebabkan sepeda motor atau mobil bisa bergerak… Siklus pada mesin bensin disebut sebagai siklus otto, sedangkan siklus pada mesin solar disebut sebagai siklus diesel… Siklus = proses yang terjadi secara reversibel (bolak balik). Terlebih dahulu kita bahas siklus otto…
Siklus otto
Tataplah gambar aneh di bawah dengan penuh kelembutan…
Ini adalah gambar mesin pembakaran dalam empat langkah alias empat tak… Mula-mula campuran udara dan uap bensin mengalir dari karburator menuju silinder pada saat piston bergerak ke bawah (langkah masukan). Selanjutnya campuran udara dan uap bensin dalam silinder ditekan secara adiabatik ketika piston bergerak ke atas (langkah kompresi alias penekanan). Karena ditekan secara adiabatik maka suhu dan tekanan campuran meningkat. Pada saat yang sama, busi memercikkan bunga api sehingga campuran udara dan uap bensin terbakar. Ketika terbakar, suhu dan tekanan gas semakin bertambah. Gas bersuhu tinggi dan bertekanan tinggi tersebut memuai terhadap piston dan mendorong piston ke bawah (langkai pemuaian). Selanjutnya gas yang terbakar dibuang melalui katup pembuangan dan dialirkan menuju pipa pembuangan (langkah pembuangan). Katup masukan terbuka lagi dan keempat langkah diulangi…
Perlu diketahui bahwa tujuan dari adanya langkah kompresi alias penekanan adiabatik adalah menaikkan suhu dan tekanan campuran udara dan uap bensin. Proses pembakaran pada tekanan yang tinggi akan menghasilkan suhu dan tekanan (P = F/A) yang sangat besar. Akibatnya gaya dorong (F = PA) yang dihasilkan selama proses pemuaian menjadi sangat besar. Mesin motor atau mobil menjadi lebih bertenaga… Walaupun tidak ditekan, campuran udara dan uap bensin bisa terbakar ketika si busi memercikkan bunga api. Tapi suhu dan tekanan gas yang terbakar tidak terlalu tinggi sehingga gaya dorong yang dihasilkan juga kecil. Akibatnya mesin menjadi kurang bertenaga…
Proses perubahan bentuk energi dan perpindahan energi pada mesin pembakaran dalam empat langkah di atas bisa dijelaskan seperti ini : Ketika terjadi proses pembakaran, energi potensial kimia dalam bensin + energi dalam udara berubah menjadi kalor alias panas. Sebagian kalor berubah menjadi energi mekanik batang piston dan poros engkol, sebagian kalor dibuang melalui pipa pembuangan (knalpot). Sebagian besar energi mekanik batang piston dan poros engkol berubah menjadi energi mekanik kendaraan (kendaraan bergerak), sebagian kecil berubah menjadi kalor alias panas… Panas timbul akibat adanya gesekan…
Proses pemuaian dan penekanan secara adiabatik pada siklus otto bisa digambarkan melalui diagram di bawah… (Diagram ini menunjukkan model ideal dari proses termodinamika yang terjadi pada mesin pembakaran dalam yang menggunakan bensin).
Campuran udara dan uap bensin masuk ke dalam silinder (a). Selanjutnya campuran udara dan uap bensin ditekan secara adiabatik (a-b). Perhatikan bahwa volume silinder berkurang… Campuran udara dan uap bensin dipanaskan pada volume konstan – campuran dibakar (b-c). Gas yang terbakar mengalami pemuaian adiabatik (c-d). Pendinginan pada volume konstan – gas yang terbakar dibuang ke pipa pembuangan dan campuran udara + uap bensin yang baru, masuk ke silinder (d-a).
Siklus Diesel
Prinsip kerja mesin diesel mirip seperti mesin bensin. Perbedaannya terletak pada langkah awal kompresi alias penekanan adiabatik (penekanan adiabatik = penekanan yang dilakukan dengan sangat cepat sehingga kalor alias panas tidak sempat mengalir menuju atau keluar dari sistem. Sistem untuk kasus ini adalah silinder). Kalau dalam mesin bensin, yang ditekan adalah campuran udara dan uap bensin, maka dalam mesin diesel yang ditekan hanya udara saja… Penekanan secara adiabatik menyebabkan suhu dan tekanan udara meningkat. Selanjutnya injector alias penyuntik menyemprotkan solar. Karena suhu dan tekanan udara sudah sangat tinggi maka ketika solar disemprotkan ke dalam silinder, si solar langsung terbakar… Tidak perlu pake busi lagi. Perhatikan besarnya tekanan yang ditunjukkan pada diagram di bawah… bandingkan dengan besarnya tekanan yang ditunjukkan pada diagram siklus otto… simpulkan sendiri ya
Diagram ini menunjukkan siklus diesel ideal alias sempurna… Mula-mula udara ditekan secara adiabatik (a-b), lalu dipanaskan pada tekanan konstan – penyuntik alias injector menyemprotkan solar dan terjadilah pembakaran (b-c), gas yang terbakar mengalami pemuaian adiabatik (c-d), pendinginan pada volume konstan – gas yang terbakar dibuang ke pipa pembuangan dan udara yang baru, masuk ke silinder (d-a). Selengkapnya bisa dipelajari di dunia perteknik-otomotifan Gurumuda hanya memberimu pengetahuan dasar saja.
Dari penjelasan yang bertele-tele di atas, kita bisa menyimpulkan bahwa setiap mesin kalor pada dasarnya memiliki zat kerja tertentu. Zat kerja untuk mesin uap adalah air, zat kerja untuk mesin bensin adalah udara dan uap bensin, zat kerja untuk mesin diesel adalah udara dan solar. Zat kerja biasanya menyerap kalor pada suhu yang tinggi (QH), melakukan usaha alias kerja (W), lalu membuang kalor sisa pada suhu yang lebih rendah (QL). Karena si energi kekal, maka QH = W + QL.
Efisiensi mesin kalor
Efisiensi (e) mesin kalor merupakan perbandingan antara Usaha alias Keja (W) yang dilakukan mesin dengan masukan Kalor pada suhu tinggi (QH). Secara matematis bisa ditulis seperti ini :
W merupakan keuntungan yang kita terima, sedangkan QH merupakan biaya yang kita keluarkan untuk membeli dan membakar bahan bakar. Sebagai manusia yang selalu ingin memperoleh keuntungan yang sebesar-besarnya dari pengeluaran yang sekecil-kecilnya , kita sangat berharap bahwa keuntungan yang kita peroleh (W) sebanding dengan biaya yang kita keluarkan (QH). Mungkinkah itu terjadi ? Nantikan hasil pengoprekannya…
Berdasarkan kekekalan energi, Kalor masukan (QH) harus sama dengan Kerja (W) yang dilakukan + Kalor yang dibuang (QL). Secara matematis bisa diobok-obok seperti ini :
Kita gantikan W pada persamaan 1 dengan W pada persamaan 2 :
Jika ingin menyatakan efisiensi mesin kalor dalam persentase, kalikan saja persamaan efisiensi dengan 100 %.
Berdasarkan persamaan efisiensi di atas, tampak bahwa semakin banyak kalor yang dibuang (QL) oleh suatu mesin kalor, semakin tidak efisien mesin kalor tersebut (merugikan kita). Kita sangat menginginkan agar jumlah kalor yang dibuang (QL) sesedikit mungkin. Bagaimanapun kalor masukan (QH) biasanya diperoleh dengan membakar minyak, batu bara, gas dkk (bahan bakar yang kita bayar). Karenanya setiap mesin kalor pada dasarnya dirancang untuk memiliki efisiensi sebesar mungkin. Btw, walaupun kita sangat menginginkan keuntungan yang sebesar-besarnya dari pengeluaran yang sekecil-kecilnya (prinsip ekonomi-kah ?), kenyataan menunjukkan bahwa efisiensi mesin uap biasanya sekitar 40 %, sedangkan efisiensi mesin pembakaran dalam sekitar 50 %. Hal ini menunjukkan bahwa setengah bagian kalor yang diperoleh dengan membakar bahan bakar (membakar duit kita ) terbuang percuma. Hanya setengah bagian saja yang berubah menjadi energi mekanik (digunakan untuk melakukan usaha alias kerja). Biar dirimu makin paham dengan penjelasan gurumuda, perhatikan contoh soal di bawah…
Entropi (Pernyataan umum hukum kedua termodinamika)
Pengantar
Dalam postingan sebelumnya kita sudah mempelajari beberapa pernyataan khusus hukum kedua termodinamika. Perlu diketahui bahwa pernyataan khusus tersebut hanya bisa menjelaskan beberapa proses ireversibel saja. Pernyataan om Clausius hanya menjelaskan perpindahan kalor dan kaitannya dengan prinsip kerja mesin pendingin. Sebaliknya pernyataan om Kelvin dan om Planck berkaitan dengan prinsip kerja mesin kalor. Walaupun tampaknya berbeda, tetapi pada dasarnya kedua pernyataan ini berhubungan dengan perpindahan kalor. Btw, masih banyakproses ireversibel lainnya tidak bisa dijelaskan menggunakan kedua pernyataan tersebut. Setelah mencium tanah, buah mangga yang lezat dan mengundang selera tidak pernah meluncur ke atas lagi. Buku yang kita dorong tidak pernah bergerak kembali ke posisinya semula. Ketika adikmu yang sangat nakal menjatuhkan gelas ke lantai hingga pecah, serpihan-serpihan gelas yang tercecer di lantai tidak pernah ngumpul lagi dan membentuk gelas hingga utuh seperti semula… Apalagi ya… masih banyak atuh. mikirin sendiri ya… hiks2… pisss…
Karena pernyataan khusus hukum kedua termodinamika tidak bisa menjelaskan semua proses ireversibel maka kita membutuhkan pernyataan yang lebih umum. Adanya pernyataan umum ini diharapkan bisa menjelaskan semua proses ireversibel yang terjadi di alam semesta. Pernyataan umum hukum kedua termodinamika baru dirumuskan pada pertengahan abad kesembilan belas, melalui sebuah besaranyang diberi julukan entropi (S). Entropi bisa dianggap sebagai ukuran kuantitatif dari ketidakteraturan. Mengenai hal ini akan dibahas kemudian… Besaran entropi pertama kali diperkenalkan oleh om Clausius dan diturunkan dari siklus om Carnot (mesin kalor sempurna). Menurut om Clausius, besarnya perubahan entropiyang dialami oleh suatu sistem, ketika sistem tersebut mendapat tambahan kalor (Q) pada suhu tetap dinyatakan melalui persamaan di bawah :
Keterangan :
Delta S = Perubahan entropi (Joule/Kelvin)
Q = Kalor (Joule)
T = Suhu (Kelvin)
Entropi merupakan besaran yang menyatakan keadaan mikroskopis sistem, karenanya tidak bisa diketahui secara langsung. Yang kita tinjau hanya perubahan entropi saja… Mirip seperti perubahan energi dalam pada hukum pertama termodinamika.
Untuk membantumu lebih memahami pembahasan ini, kita obok-obok latihan soal saja :
Hukum ketiga termodinamika
Hukum ketiga termodinamika merupakan hukum fisika yang jablai Kurang populer karena jarang dibelai… Daripada hukum ketiga termodinamika menjadi jablai, alangkah baiknya jika gurumuda bahas saja, biar dirimu bisa membelainya…
Hukum ketiga termodinamika mengatakan bahwa mencapai suhu nol mutlak (0 K) adalah hal yang tidak mungkin terjadi. Untuk mengetahui alasan mengapa suhu nol mutlak tidak bisa dicapai, silahkan pelajari lagi materi teori kinetik gas… ulasannya sudah disertakan dalam pokok bahasan tersebut. Download saja di halaman ebook gratis…
Sekian dan sampai jumpa lagi pada episode berikutnya… Ini adalah pokok bahasan terpendek yang pernah kutulis
Tidak ada komentar:
Posting Komentar