Hukum Kepler
Pengantar
Sebelum kita mempelajari hukum Kepler secara lebih mendalam, terlebih dahulu kita kenang kembali kisah masa lalu yang mengantar Paman Kepler merumuskan hukumnya yang terkenal sampai di seluruh pelosok negeri, bahkan sampai ke seluruh penjuru ruangan kelas XI IPA. Tulisan ini juga menyinggung masa lalu ilmu astronomi, sebuah kisah perkembangan ilmu pengetahuan yang selalu menuai pertentangan di tahap awal perkembangannya.
Sejarah Panjang
Awal perkembangan ilmu astronomi modern dimulai oleh Purbach (1423-1461) di universitas Wina serta lebih khusus lagi oleh muridnya Yohanes muller (1436-1476). Johanes Muller pergi ke Italia khusus untuk belajar karya asli Ptolemeus tentang astronomi bersama temannya Walther (1430-1504). Walther adalah seorang yang kaya, ia memiliki observatorium pribadi, serta mesin percetakan pribadi. Muller bersama Walther membuat penanggalan berdasarkan benda-benda langit yang banyak dipakai oleh para pelaut Spanyol dan Portugis. Muller kemudian pergi ke Roma untuk melakukan pembaruan kalender di sana, akan tetapi ia meninggal sebelum dapat melaksanakan niatnya. Pengamatan muller dilanjutkan oleh temannya, Walther dan Albrecht Durer. Maka, ketika Nicolas Copernicus (1473-1543) memulai karyanya, telah terdapat cukup banyak karya hasil pengamatan astronomi.
Sistem Copernicus yang baru tentang alam semesta menempatkan matahari sebagai pusat alam semesta, serta terdapat tiga jenis gerakan bumi. Tiga jenis gerakan bumi itu adalah gerak rotasi bumi (perputaran bumi pada porosnya), gerak revolusi (gerak bumi mengelilingi matahari) dan suatu girasi perputaran sumbu bumi yang mempertahankan waktu siang dan malam sama panjangnya. Teori Copernicus tersebut ditulis tangan dan diedarkan di antara kawan-kawannya pada tahun 1530. Teori Copernicus menjadi semakin terkenal dan menarik perhatian seorang ahli matematika dari wittenberg bernama George Rheticus (1514-1576). Rheticus kemudian belajar bersama Copernicus dan pada tahun 1540 menerbitkan buku tentang teori Copernicus. Akhirnya Copernicus menerbitkan hasil karyanya sendiri pada tahun 1543 berjudul On the Revolutions Of the Celestial Orbs.
Buku copernicus dicetak di Nuremberg, pada awalnya di bawah supervisi Rheticus, kemudian dilanjutkan di bawah supervisi Andreas Osiander, seorang pastor Lutheran. Osiander menambahkan kata pengantar untuk karya Copernicus dengan menyatakan bahwa teori yang baru itu tidak harus benar, dan dapat dipandang semata-mata sebagai suatu kecocokan metode matematis tentang benda-benda langit. Copernicus sendiri tidak berpendapat begitu. Ia berpendapat bahwa sistem semesta yang dikemukakannya adalah nyata.
Copernicus berpendapat bahwa sistem yang dikemukakan oleh ptolemous ‘tidak cukup tepat, tidak cukup memuaskan pikiran’, karena ptolemous beranjak langsung dari karya kelompok Pythagoras. Untuk menjelaskan gerakan benda-benda langit, ptolemous menganggap bahwa benda-benda langit itu bergerak melingkar dengan kecepatan angular yang tidak sama relatif terhadap pusatnya, kecepatan anguler itu hanya sama terhadap titik di luar pusat lingkaran itu. Menurut copernicus, asumsi itu merupakan kesalahan pokok dari sistem ptolemous. Akan tetapi hal ini bukan hal pokok yang dikemukakan oleh copernicus. Kritik utama yang dikemukakan oleh copernicus kepada para ahli astronomi pendahulunya adalah, dengan menggunakan aksioma-aksiomanya, mereka telah gagal menjelaskan gerakan benda-benda langit yang teramati dan juga teori-teori yang mereka kembangkan melibatkan sistem yang rumit yang tidak perlu. Copernicus menilai para pendahulunya dengan mengatakan : “di dalam metode yang dikembangkan, mereka telah mengabaikan hal-hal penting atau menambahkan hal-hal yang tidak perlu”.
Copernicus memusatkan perhatian pada hal yang terakhir. Ia melihat bahwa para leluhurnya telah menambahkan tiga gerakan bumi untuk setiap benda langit agar sampai pada kesimpulan bahwa bumi berada diam di pusat putaran. Ketiga lingkaran tersebut telah ditambahkan untuk setiap benda langit di dalam sistem geometris bangsa Yunani untuk menjelaskan gerakan benda-benda langit dengan bumi sebagai pusatnya. Copernicus berpendapat bahwa lingkaran-lingkaran tersebut tidak diperlukan dengan berpendapat bahwa bumi berputar pada sumbuhnya setiap hari dan bergerak melintasi orbitnya mengitari matahari setiap tahun. Dengan cara demikian, Copernicus mengurangi jumlah lingkaran yang diperlukan untuk menjelaskan gerakan benda-benda langit.
Dengan sistem yang dikemukakannya itu, Copernicus memberikan jawaban yang paling sederhana untuk menjawab pertanyaan yang diajukan bangsa Yunani tentang bagaimana menjelaskan gerakan benda-benda langit dalam suatu gerakan yang melingkar dan seragam. Tidak ada hal yang baru dalam metode tersebut, hal itu telah dipergunakan oleh para astronom sejak jaman Pythagoras. Dengan menggunakan konsepsi yang dipakai oleh Pythagoras, ia mencampakkan sistem yang dikembangkan oleh bangsa yunani. Akan tetapi, ada satu konsep yang tidak dipakainya, yaitu bahwa benda-benda langit adalah mulia.
Di dalam sistem Copernicus, bumi berputar mengitari matahari, seperti planet-planet lainnya. Bumi menjalani gerakan yang seragam dan melingkar sebagai benda langit, suatu gerakan yang sejak lama diyakini sebagai gerakan yang sempurna. Lebih jauh, copernicus menekankan kesamaan antara bumi dengan benda-benda langit lainnya bahwa semuanya memiliki gravitasi. Gravitasi ini tidak berada di langit, melainkan bekerja pada materi, seperti bumi dan benda-benda langit memiliki gaya ikat dan mempertahankannya dalam suatu lingkaran yang sempurna. Untuk hal ini penjelasan copernicus agak berbau teologis : “menurut saya gravitasi tidak lain daripada suatu kekuatan alam yang diciptakan oleh pencipta agar supaya semuanya berada dalam kesatuan dan keutuhan. Kekuatan seperti itu mungkin juga dimiliki oleh matahari, bulan dan planet-planet agar semuanya tetap bundar”
Sistem copernicus lebih bagus dan lebih sederhana daripada sistem ptolomeus. Di dalam sistem lama, benda-benda langit memiliki baik gerakan timur-barat maupun rotasi pada arah yang berlawanan. Dalam sistem copernicus, bumi dan semua planet bergerak mengitari matahari dengan arah yang sama dan laju yang berkurang semakin jauh dari matahari. Sementara itu, matahari yang berada di pusat dan bintang-bintang yang berada di luar tatasurya berada pada tempatnya yang tetap. Sekarang dapat dijelaskan mengapa planet-planet kelihatan mendekati dan menjahui bumi. Planet-planet itu pada suatu saat berada pada satu sisi yang sama dengan bumi, tetapi pada saat yang lain berada pada sisi yang berseberangan
Dengan sistem Copernicus, perhitungan astronomi dibuat menjadi lebih mudah, karena melibatkan jumlah lingkaran yang lebih sedikit. Tetapi prakiraan posisi planet-planet dan perhitungan lainnya tidak lebih tepat daripada dihitung dengan menggunakan sistem ptolemous, keduanya masih memiliki kesalahan sekitar satu persen. Selanjutnya terdapat keberatan-keberatan terhadap sistem Copernicus. Pertama, dan mungkin tidak terlalu serius ketika itu, adalah kenyataan bahwa pusat tata surya tidak tepat berada pada matahari. Copernicus menempatkan pusat tatasurya pada pusat orbit bumi, yang tidak persis berada pada matahari, untuk menjelaskan perbedaan panjang musim-musim. Beberapa filsuf berpendapat bahwa pusat tata surya haruslah berada pada suatu obyek nyata, meskipun banyak juga yang menerima bahwa titik geometris dapat dipakai sebagai pusat tatasurya. Selanjutnya, para pendukung aristoteles berpendapat bahwa gravitasi bekerja ke arah titik geometris tersebut, sebagai pusat tatasurya, yang tidak harus sama dengan pusat bumi.
Keberatan kedua, yang lebih serius, menyatakan bahwa bila bumi berputar, maka udara cenderung tertinggal di belakang, hal ini akan menimbulkan angin yang arahnya ke timur. Copernicus memberikan dua jawaban untuk keberatan timur. Pertama, yang merupakan suatu jenis penjelasan abad pertengahan, yaitu udara berputar bersama-sama dengan bumi karena udara berisi partikel-partikel bumi yang memiliki sifat-sifat yang sama dengan bumi. Maka bumi menarik udara berputar bersama-sama dengan bumi karena udara bersisi partikel-partikel bumi. Maka bumi menarik udara berputar dengan bumi. Jawaban kedua yang bersifat modern, udara berputar tanpa hambatan karena udara berdampingan dengan bumi yang terus menerus berputar. Keberatan yang sama adalah apabila sebuah batu dilemparkan ke atas maka batu itu akan tertinggal oleh bumi yang berputar, sehingga kalau batu itu jatuh akan berada di sebelah barat proyeksi batu itu. Untuk keberatan ini, copernicus menjawab ‘karena benda-benda yang ditarik ke tanah oleh beratnya adalah terbuat dari tanah, maka tidak diragukan bahwa benda-benda itu memiliki sifat yang sama dengan bumi secara keseluruhan, sehingga berputar bersama-sama dengan bumi’
Keberatan lebih jauh terhadap sistem copernicus adalah bila bumi berputar, maka bumi akan hancur berkeping-keping oleh gaya sentrifugal. Copernicus menjawab bahwa bila bumi tidak berputar maka bola yang lebih besar yang ditempati oleh bintang-bintang pasti bergerak dengan kecepatan yang sangat besar dan lebih rentan oleh pengaruh gaya sentrifugal.
Nampaknya copernicus tidak menerima teori aristoteles juga tidak menerima teori adanya gaya dorong. Copernicus berpendapat bahwa spin dan gerakan dalam suatu lingkaran adalah gerakan-gerakan yang spontan, merupakan sifat alami dari suatu bentuk bola dimana bumi dan benda-benda langit ada. Oleh karena itu, copernicus tidak menggunakan hirarki para malaikat untuk menggerakan benda-benda langit, yaitu malaikat yang lebih berkuasa menggerakan benda yang lebih tinggi hirarkinya. Menurut copernicus benda-benda langit bergerak secara spontan.
Maka bersama copernicus muncul suatu sistem cosmos yang betul-betul baru. Penggerak alam semesta tidak lagi penting. Matahari sebagai pusat tatasurya menjadi pengatur alam semesta.
Terdapat figur perantara di antara pendukung aristoteles yang mendukung adanya penggerak alam semesta dan copernicus yang menyatakan matahari sebagai pusat tatasurya yaitu nicolas Cusa.
Kiranya dapat dikatakan bahwa copernicus berusaha mempromosikan suatu nilai baru dengan sistem yang dikemukakannya. Karena apabila ia sekedar ingin mengembangkan suatu sistem yang lebih sederhana, terdapat suatu sistem yang dipakai oleh tycho brahe (1546-1601). Di dalam sistem itu planet-planet berputar mengelilingi matahari, sementara itu matahari bersama-sama dengan planet-planet yang mengelilinginya sebagai satu kesatuan, berputar mengelilingi bumi yang diam yang berada pada pusat semesta. Sistem itu secara matematis ekuivalen dengan sistem copernicus, dan juga sistem itu tidak menimbulkan persoalan fisis. Tetapi sistem itu tetap mempertahankan nilai-nilai lama dalam sistem cosmos yaitu bumi sebagai pusat alam semesta. Itulah mungkin sebabnya copernicus mengajukan suatu sistem baru, heliosentris.
Dalam seluruh hidupnya, Copenicus menganut pandangan bangsa yunani bahwa gerakan benda-benda langit adalah melingkar dengan kecepatan tetap, maka meskipun sistem yang dibuat copernicus lebih sederhana dibandingkan dengan sistem ptolomeus, tetapi tetap rumit dibandingkan dengan sistem Kepler (1571-1630). Copernicus menjelaskan gerakan benda-benda langit dengan menggunakan tiga puluh empat lingkaran, sementara itu kepler hanya menggunakan tujuh elips. Seperti dikatakan oleh kepler, copernicus tidak menyadari akan adanya suatu bangunan yang sangat baik yang ada dalam genggamannya. Copernicus mengetahui bahwa gabungan beberapa lingkaran dapat menghasilkan elips, akan tetapi ia tidak pernah menggunakan elips untuk menggambarkan benda-benda langit. Lagipula, pada tahap-tahap awal, copernicus sangat menghargai hasil observasi bangsa kuno. Copernicus menentang werner yang menyatakan bahwa hasil-hasil pengamatan terakhir lebih cocok dengan sistem ptolemous daripada dengan sistem copernicus. Kenyataannya memang tiga kali lebih tepat.
Pengamatan paling penting dalam bidang astronomi modern adalah yang dilakukan oleh Ticho Brahe. Hasil pengamatan Ticho Brahe limapuluh kali lebih tepat dari hasil muller, hasil terbaik yang dapat dilakukan dengan mata telanjang. Tycho Brahe adalah orang Denmark terhormat. Raja Frederick II dari Denmark memberi tempat tinggal dan pulau Hveen untuk melakukan kegiatan astronominya. Di pulau itu Tycho Brahe membangun kastil, bengkel, percetakan pribadi, dan observatorium. Ia bekerja di pulau itu dari tahun 1576 sampai 1597. Ia berpendapat bahwa adalah tidak mungkin melakukan pengamatan tanpa panduan suatu teori. Ia menganut pendangan geosentris.
Ketika raja Frederick II wafat, fasilitas yang diterima Tycho Brahe tidak diperpanjang, kemudian Ticho Brahe pergi ke Praha pada tahun 1599, di mana ia mendapat tunjangan dari raja Rudolph II. Tahun-tahun berikutnya ia bergabung dengan astronom jerman, Johann Kepler, seorang matematikawan. Kepler adalah anak seorang tentara wurtemburg. Ia mempelajari sistem copernicus di Tubingen. Kerja sama antara Kepler dengan Ticho Brahe tidak berlangsung lama karena Ticho Brahe meninggal dunia. Setelah Ticho Brahe meninggal, Kepler tetap tinggal di Praha.
Karya pertama Kepler dalam bidang astronomi berjudul The Mysteri of the Universe yang diterbitkan pada tahun 1596. Di dalam buku itu, ia berusaha mencari suatu keselarasan antara orbit-orbit planet menurut copernicus dengan hasil pengamatan Ticho Brahe. Akan tetapi Kepler tidak berhasil menemukan keselarasan antara sistem-sistem yang dikembangkan oleh Copernicus maupun Ptolemous dengan hasil pengamatan Tycho Brahe. Oleh karena itu ia meninggalkan sistem ptolemous dan Copernicus lalu berusaha mencari sistem baru. Pada tahun 1609, Kepler menemukan ternyata elips sangat cocok dengan hasil pengamatan Ticho Brahe. Kepler tidak lagi menggunakan lingkaran sebagai lintasan benda-benda langit melainkan elips.
HUKUM KEPLER
Karya Kepler sebagian dihasilkan dari data-data hasil pengamatan yang dikumpulkan Ticho Brahe mengenai posisi planet-planet dalam geraknya di luar angkasa. Hukum ini telah dicetuskan Kepler setengah abad sebelum Newton mengajukan ketiga Hukum-nya tentang gerak dan hukum gravitasi universal. Di antara hasil karya Kepler, terdapat tiga penemuan yang sekarang kita kenal sebagai Hukum Kepler mengenai gerak planet.
Hukum I Kepler
Lintasan setiap planet ketika mengelilingi matahari berbentuk elips, di mana matahari terletak pada salah satu fokusnya.
Kepler tidak mengetahui alasan mengapa planet bergerak dengan cara demikian. Ketika mulai tertarik dengan gerak planet-planet, Newton menemukan bahwa ternyata hukum-hukum Kepler ini bisa diturunkan secara matematis dari hukum gravitasi universal dan hukum gerak Newton. Newton juga menunjukkan bahwa di antara kemungkinan yang masuk akal mengenai hukum gravitasi, hanya satu yang berbanding terbalik dengan kuadrat jarak yang konsisten dengan Hukum Kepler.
Perhatikan orbit elips yang dijelaskan pada Hukum I Kepler. Dimensi paling panjang pada orbit elips disebut sumbu mayor alias sumbu utama, dengan setengah panjang a. Setengah panjang ini disebut sumbu semiutama alias semimayor (sambil lihat gambar di bawah ya).
F1 dan F2 adalah titik Fokus. Matahari berada pada F1 dan planet berada pada P. Tidak ada benda langit lainnya pada F2. Total jarak dari F1 ke P dan F2 ke P sama untuk semua titik dalam kurva elips. Jarak pusat elips (O) dan titik fokus (F1 dan F2) adalah ea, di mana e merupakan angka tak berdimensi yang besarnya berkisar antara 0 sampai 1, disebut juga eksentrisitas. Jika e = 0 maka elips berubah menjadi lingkaran. Kenyataanya, orbit planet berbentuk elips alias mendekati lingkaran. Dengan demikian besar eksentrisitas tidak pernah bernilai nol. Nilai e untuk orbit planet bumi adalah 0,017. Perihelion merupakan titik yang terdekat dengan matahari, sedangkan titik terjauh adalah aphelion.
Pada Persamaan Hukum Gravitasi Newton, telah kita pelajari bahwa gaya tarik gravitasi berbanding terbalik dengan kuadrat jarak (1/r2), di mana hal ini hanya bisa terjadi pada orbit yang berbentuk elips atau lingkaran saja.
Contoh soal Hukum I Kepler :
Komet Halley bergerak sepanjang orbit elips mengitari matahari. Pada perihelion, komet Halley berjarak 8,75 x107 km dari matahari, sedangkan pada aphelion berjarak 5,26 x 109 km dari matahari. Berapakah eksentrisitas dari orbit komet halley
Panduan jawaban :
Panjang sumbu utama sama dengan total jarak komet ke matahari ketika komet berada di perihelion dan aphelion.
Panjang sumbu utama adalah 2a, dengan demikian :
Pada Perihelion, jarak komet Halley dengan matahari diperoleh dari (sambil perhatikan gambar di atas) :
a – ea = a(1-e)
Jarak komet Halley dengan matahari ketika komet Halley berada pada perihelion adalah 8,75 x107 km. Dengan demikian, eksentrisitas komet Halley adalah :
Nilai eksentrisitas komet halley mendekati 1. Ini menunjukkan bahwa orbit halley sangat panjang….
Hukum II Kepler
Luas daerah yang disapu oleh garis antara matahari dengan planet adalah sama untuk setiap periode waktu yang sama.
Hal yang paling utama dalam Hukum II Kepler adalah kecepatan sektor mempunyai harga yang sama pada semua titik sepanjang orbit yang berbentuk elips.
Hukum III Kepler
Kuadrat waktu yang diperlukan oleh planet untuk menyelesaikan satu kali orbit sebanding dengan pangkat tiga jarak rata-rata planet-planet tersebut dari matahari.
Jika T1 dan T2 menyatakan periode dua planet, dan r1 dan r2 menyatakan jarak rata-rata mereka dari matahari, maka
Newton menunjukkan bahwa Hukum III Kepler juga bisa diturunkan secara matematis dari Hukum Gravitasi Universal dan Hukum Newton tentang gerak dan gerak melingkar. Sekarang mari kita tinjau Hukum III Kepler menggunakan pendekatan Newton.
Terlebih dahulu kita tinjau kasus khusus orbit lingkaran, yang merupakan kasus khusus dari orbit elips. Semoga dirimu belum melupakan Hukum Newton dan pelajaran Gerak Melingkar…
Sekarang kita masukan persamaan Hukum Gravitasi Newton dan percepatan sentripetal ke dalam persamaan Hukum II Newton :
m1 adalah massa planet, mM adalah massa matahari, r1 adalah jarak rata-rata planet dari matahari, v1 merupakan laju rata-rata planet pada orbitnya.
Waktu yang diperlukan sebuah planet untuk menyelesaikan satu orbit adalah T1, di mana jarak tempuhnya sama dengan keliling lingkaran, 2 phi r1. Dengan demikian, besar v1 adalah :
Misalnya persamaan 1 kita turunkan untuk planet venus (planet 1). Penurunan persamaan yang sama dapat digunakan untuk planet bumi (planet kedua).
T2 dan r2 adalah periode dan jari-jari orbit planet kedua. Sekarang coba anda perhatikan persamaan 1 dan persamaan 2. Perhatikan bahwa ruas kanan kedua persamaan memiliki nilai yang sama. Dengan demikian, jika kedua persamaan ini digabungkan, akan kita peroleh :
Persamaan ini adalah Hukum III Kepler…
Kita juga bisa menurunkan persamaaan untuk menghitung besarnya periode gerak planet (T) dengan cara lain. Pertama terlebih dahulu kita turunkan untuk kasus gerak melingkar.
Sebelumnya kita telah mensubtitusikan persamaan Hukum Gravitasi Newton dan percepatan sentripetal ke dalam persamaan Hukum II Newton :
Pada pembahasan mengenai gerak melingkar beraturan, kita mempelajari bahwa laju v adalah perbandingan jarak tempuh dalam satu kali putaran (2phir) dengan periode (waktu yang dibutuhkan untuk melakukan satu kali putaran), yang secara matematis dirumuskan sebagai berikut :
Pada persamaan ini tampak bahwa periode dalam orbit lingkaran sebanding dengan pangkat 3/2 dari jari-jari orbit. Newton menunjukkan bahwa hubungan ini juga berlaku untuk orbit elips, di mana jari-jari orbit lingkaran (r) diganti dengan setengah sumbu utama a
Dibaca secara perlahan-lahan sambil direnungkan
DATA ASTRONOMI
Referensi :
Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga
Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga
Kanginan, Marthen, 2002, Fisika untuk SMA kelas X, Semester 1, Jakarta : Penerbit Erlangga
Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga
Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga