Sabtu, 11 Desember 2010
Gerak harmonik sederhana
Contoh gerak harmonik sederhana
Gerak harmonik sederhana adalah gerak bolak - balik benda melalui suatu titik keseimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan[1].
*
o
+
*
o
*
*
*
[sunting] Jenis, Contoh, dan Besaran Fisika pada Gerak Harmonik Sederhana
[sunting] Jenis Gerak Harmonik Sederhana
Gerak Harmonik Sederhana dapat dibedakan menjadi 2 bagian, yaitu[1] :
* Gerak Harmonik Sederhana (GHS) Linier, misalnya penghisap dalam silinder gas, gerak osilasi air raksa / air dalam pipa U, gerak horizontal / vertikal dari pegas, dan sebagainya.
* Gerak Harmonik Sederhana (GHS) Angular, misalnya gerak bandul/ bandul fisis, osilasi ayunan torsi, dan sebagainya.
[sunting] Beberapa Contoh Gerak Harmonik Sederhana
* Gerak harmonik pada bandul
Gerak harmonik pada bandul
Ketika beban digantungkan pada ayunan dan tidak diberikan gaya, maka benda akan dian di titik keseimbangan B[2]. Jika beban ditarik ke titik A dan dilepaskan, maka beban akan bergerak ke B, C, lalu kembali lagi ke A[2]. Gerakan beban akan terjadi berulang secara periodik, dengan kata lain beban pada ayunan di atas melakukan gerak harmonik sederhana[2].
* Gerak harmonik pada pegas
Gerak vertikal pada pegas
Semua pegas memiliki panjang alami sebagaimana tampak pada gambar[2]. Ketika sebuah benda dihubungkan ke ujung sebuah pegas, maka pegas akan meregang (bertambah panjang) sejauh y. Pegas akan mencapai titik kesetimbangan jika tidak diberikan gaya luar (ditarik atau digoyang)[2].
[sunting] Besaran Fisika pada Ayunan Bandul
[sunting] Periode (T)
Benda yang bergerak harmonis sederhana pada ayunan sederhana memiliki periode[3]. Periode ayunan (T) adalah waktu yang diperlukan benda untuk melakukan satu getaran. Benda dikatakan melakukan satu getaran jika benda bergerak dari titik di mana benda tersebut mulai bergerak dan kembali lagi ke titik tersebut. Satuan periode adalah sekon atau detik[3].
[sunting] Frekuensi (f)
Frekuensi adalah banyaknya getaran yang dilakukan oleh benda selama satu detik, yang dimaksudkan dengan getaran di sini adalah getaran lengkap[3]. Satuan frekuensi adalah hertz[3].
[sunting] Hubungan antara Periode dan Frekuensi
Frekuensi adalah banyaknya getaran yang terjadi selama satu detik. Dengan demikian selang waktu yang dibutuhkan untuk melakukan satu getaran adalah[3] :
\frac{1 getaran}{f getaran}1 sekon = \frac{1}{f}sekon
Selang waktu yang dibutuhkan untuk melakukan satu getaran adalah periode. Dengan demikian, secara matematis hubungan antara periode dan frekuensi adalah sebagai berikut[3] :
T = \frac{1}{f}
f = \frac{1}{T}
[sunting] Amplitudo
Pada ayunan sederhana, selain periode dan frekuensi, terdapat juga amplitudo. Amplitudo adalah perpindahan maksimum dari titik kesetimbangan[3].
[sunting] Gaya Pemulih
Gaya pemulih dimiliki oleh setiap benda elastis yang terkena gaya sehingga benda elastis tersebut berubah bentuk[4]. Gaya yang timbul pada benda elastis untuk menarik kembali benda yang melekat padanya di sebut gaya pemulih[4].
[sunting] Gaya Pemulih pada Pegas
Pegas adalah salah satu contoh benda elastis[4]. Oleh sifat elastisnya ini, suatu pegas yang diberi gaya tekan atau gaya regang akan kembali pada keadaan setimbangnya mula- mula apabila gaya yang bekerja padanya dihilangkan[4]. Gaya pemulih pada pegas banyak dimanfaatkan dalam bidang teknik dan kehidupan sehari- hari[4]. Misalnya di dalam shockbreaker dan springbed[4]. Sebuah pegas berfungsi meredam getaran saat roda kendaraan melewati jalan yang tidak rata[4]. Pegas - pegas yang tersusun di dalam springbed akan memberikan kenyamanan saat orang tidur[4].
[sunting] Hukum Hooke
Robert Hooke
Jika gaya yang bekerja pada sebuah pegas dihilangkan, pegas tersebut akan kembali pada keadaan semula[5]. Robert Hooke, ilmuwan berkebangsaan Inggris menyimpulkan bahwa sifat elastis pegas tersebut ada batasnya dan besar gaya pegas sebanding dengan pertambahan panjang pegas[5]. Dari penelitian yang dilakukan, didapatkan bahwa besar gaya pegas pemulih sebanding dengan pertambahan panjang pegas. Secara matematis, dapat dituliskan sebagai[5] :
F = -k \Delta\ x, dengan k = tetapan pegas (N / m)
Tanda (-) diberikan karena arah gaya pemulih pada pegas berlawanan dengan arah gerak pegas tersebut.
[sunting] Susunan Pegas
Konstanta pegas dapat berubah nilainya, apabila pegas - pegas tersebut disusun menjadi rangkaian[5]. Besar konstanta total rangkaian pegas bergantung pada jenis rangkaian pegas, yaitu rangkaian pegas seri atau paralel[5].
* Seri / Deret
Gaya yang bekerja pada setiap pegas adalah sebesar F, sehingga pegas akan mengalami pertambahan panjang sebesar \Delta\ x_1 dan \Delta\ x_2. Secara umum, konstanta total pegas yang disusun seri dinyatakan dengan persamaan[5] :
\frac{1} {k_total} = \frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} +.... + \frac{1}{k_n}, dengan kn = konstanta pegas ke - n.
* Paralel
Jika rangkaian pegas ditarik dengan gaya sebesar F, setiap pegas akan mengalami gaya tarik sebesar F1 dan F2, pertambahan panjang sebesar \Delta\ x_1 dan \Delta\ x_2[5]. Secara umum, konstanta total pegas yang dirangkai paralel dinyatakan dengan persamaan[5] :
ktotal = k1 + k2 + k3 +....+ kn, dengan kn = konstanta pegas ke - n.
[sunting] Gaya Pemulih pada Ayunan Bandul Matematis
Ayunan Bandul Matematis
Ayunan matematis merupakan suatu partikel massa yang tergantung pada suatu titik tetap pada seutas tali, di mana massa tali dapat diabaikan dan tali tidak dapat bertambah panjang[6]. Dari gambar tersebut, terdapat sebuah beban bermassa m tergantung pada seutas kawat halus sepanjang l dan massanya dapat diabaikan. Apabila bandul itu bergerak vertikal dengan membentuk sudut θ, gaya pemulih bandul tersebut adalah mgsinθ[6]. Secara matematis dapat dituliskan[6] :
F = mgsinθ
Oleh karena sin\theta = \frac {y} l, maka :
F = -mg \frac {y} l
[sunting] Persamaan, Kecepatan, dan Percepatan Gerak Harmonik Sederhana
[sunting] Persamaan Gerak Harmonik Sederhana
Persamaan Gerak Harmonik Sederhana adalah[6] :
Y = A sin \omega\ t
Keterangan :
Y = simpangan
A = simpangan maksimum (amplitudo)
F = frekuensi
t = waktu
Jika posisi sudut awal adalah θ0, maka persamaan gerak harmonik sederhana menjadi [6]:
Y = A sin \omega\ t + \theta_0
[sunting] Kecepatan Gerak Harmonik Sederhana
Dari persamaan gerak harmonik sederhana Y = A sin \omega\ t
Kecepatan gerak harmonik sederhana[6] :
v = \frac{dy}{dt} (sin A sin \omega\ t)
v = A \omega\ cos \omega\ t
Kecepatan maksimum diperoleh jika nilai cos \omega\ t = 1 atau \omega\ t = 0, sehingga : vmaksimum = Aω
[sunting] Kecepatan untuk Berbagai Simpangan
Y = A sin \omega\ t
Persamaan tersebut dikuadratkan
Y^2 = A^2 sin^2 \omega\ t, maka[6] :
Y^2 = A^2 (1 - COS^2 \omega\ t)
Y^2 = A^2 - A^2 COS^2 \omega\ t ...(1)
Dari persamaan : v = A \omega\ cos \omega\ t
\frac{v}{\omega} = A cos \omega\ t ...(2)
Persamaan (1) dan (2) dikalikan, sehingga didapatkan :
v^2 = \omega\ (A^2 - Y^2)
Keterangan :
v =kecepatan benda pada simpangan tertentu
ω = kecepatan sudut
A = amplitudo
Y = simpangan
[sunting] Percepatan Gerak Harmonik Sederhana
Dari persamaan kecepatan : v = A \omega\ cos \omega\ t, maka[6] :
a = \frac{dv}{dt} = \frac{d}{dt}
a = -A \omega^2\ sin \omega\ t
Percepatan maksimum jika \omega\ t = 1 atau \omega\ t = 900 = \frac \pi 2
a maks = -A \omega^2\ sin \frac \pi 2
a maks = -A \omega^2\
Keterangan :
a maks = percepatan maksimum
A = amplitudo
ω = kecepatan sudut
[sunting] Hubungan Gerak Harmonik Sederhana (GHS) dan Gerak Melingkar Beraturan (GMB)
Gerak Melingkar
Gerak Melingkar Beraturan dapat dipandang sebagai gabungan dua gerak harmonik sederhana yang saling tegak lurus, memiliki Amplitudo (A) dan frekuensi yang sama namun memiliki beda fase relatif \frac{\phi}{2} atau kita dapat memandang Gerak Harmonik Sederhana sebagai suatu komponen Gerak Melingkar Beraturan[7]. Jadi dapat diimpulkan bahwa pada suatu garis lurus, proyeksi sebuah benda yang melakukan Gerak Melingkar Beraturan merupakan Gerak Harmonik Sederhana[7]. Frekuensi dan periode Gerak Melingkar Beraturan sama dengan Frekuensi dan periode Gerak Harmonik Sederhana yang diproyeksikan[7].
Misalnya sebuah benda bergerak dengan laju tetap (v) pada sebuah lingkaran yang memiliki jari-jari A sebagaimana tampak pada gambar di samping[7]. Benda melakukan Gerak Melingkar Beraturan, sehingga kecepatan sudutnya bernilai konstan[7]. Hubungan antara kecepatan linear dengan kecepatan sudut dalam Gerak Melingkar Beraturan dinyatakan dengan persamaan[7] :
\omega = \frac{v}{\gamma}
Karena jari-jari (r) pada Gerak Melingkar Beraturan di atas adalah A, maka persamaan ini diubah menjadi :
\omega = \frac{v}{\gamma}, v = \omega\ A ... (1)
Simpangan sudut (teta) adalah perbandingan antara jarak linear x dengan jari-jari lingkaran (r), dan dinyatakan dengan persamaan :
\theta = \frac{x}{\gamma} = \frac{vt}{\gamma} ... (2), x adalah jarak linear, v adalah kecepatan linear dan t adalah waktu tempuh (x = vt adalah persamaan Gerak Lurus alias Gerak Linear). Kemudian v pada persamaan 2 digantikan dengan v pada persamaan 1 dan jari-jari r digantikan dengan A :
\theta = \frac{vt}{\gamma}
\theta = \omega\ t
Dengan demikian, simpangan sudut benda relatif terhadap sumbu x dinyatakan dengan persamaan :
\theta = \omega\ t + \theta_0 ... (3) (θ0 adalah simpangan waktu pada t = 0})
Pada gambar di atas, posisi benda pada sumbu x dinyatakan dengan persamaan :
x = Acosθ ...(4)
x = A cos (\omega\ t + \theta_0)
Persamaan posisi benda pada sumbu y :
y = A sin (\omega\ t + \theta_0)
Keterangan :
A = amplitudo
ω = kecepatan sudut
θ0 = simpangan udut pada saat t = 0
[sunting] Aplikasi Gerak Harmonik Sederhana
[sunting] Shockabsorber pada Mobil
Shockabsorber pada mobil
Peredam kejut (shockabsorber) pada mobil memiliki komponen pada bagian atasnya terhubung dengan piston dan dipasangkan dengan rangka kendaraan[8]. Bagian bawahnya, terpasang dengan silinder bagian bawah yang dipasangkan dengan as roda[8]. Fluida kental menyebabkan gaya redaman yang bergantung pada kecepatan relatif dari kedua ujung unit tersebut[8]. Hal ini membantu untuk mengendalikan guncangan pada roda[8].
[sunting] Jam Mekanik
Jam mekanik
Roda keseimbangan dari suatu jam mekanik memiliki komponen pegas[8]. Pegas akan memberikan suatu torsi pemulih yang sebanding dengan perpindahan sudut dan posisi kesetimbangan[8]. Gerak ini dinamakan Gerak Harmonik Sederhana sudut (angular)[8].
[sunting] Garpu Tala
Garpu tala
Garpu tala dengan ukuran yang berbeda menghasilkan bunyi dengan pola titinada yang berbeda[8]. Makin kecil massa m pada gigi garpu tala, makin tinggi frekuensi osilasi dan makin tinggi pola titinada dari bunyi yang dihasilkan garpu tala[8].
Gelombang
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Perubahan tertunda ditampilkan di halaman iniBelum Diperiksa
Langsung ke: navigasi, cari
Gelombang air laut saat mendekati pantai akan berubah panjang gelombangnya
Gelombang adalah getaran yang merambat. Bentuk ideal dari suatu gelombang akan mengikuti gerak sinusoide. Selain radiasi elektromagnetik, dan mungkin radiasi gravitasional, yang bisa berjalan lewat vakum, gelombang juga terdapat pada medium (yang karena perubahan bentuk dapat menghasilkan gaya memulihkan yang lentur) di mana mereka dapat berjalan dan dapat memindahkan energi dari satu tempat kepada lain tanpa mengakibatkan partikel medium berpindah secara permanen; yaitu tidak ada perpindahan secara masal. Malahan, setiap titik khusus berosilasi di sekitar satu posisi tertentu.
Dispersi
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Perubahan tertunda ditampilkan di halaman iniBelum Diperiksa
Langsung ke: navigasi, cari
Broom icon.svg
Artikel ini perlu dirapikan agar memenuhi standar Wikipedia
Merapikan artikel bisa berupa membagi artikel ke dalam paragraf atau wikifikasi artikel. Setelah dirapikan, tolong hapus pesan ini.
Dispersi adalah peristiwa penguraian cahaya polikromarik (putih) menjadi cahaya-cahaya monokromatik (me, ji, ku, hi, bi, ni, u) pada prisma lewat pembiasan atau pembelokan. Hal ini membuktikan bahwa cahaya putih terdiri dari harmonisasi berbagai cahaya warna dengan berbeda-beda panjang gelombang.
warna panjang gelombang
ungu 400-440nm
biru 440-495nm
hijau 495-580nm
kuning 580-600nm
orange 600-640nm
merah 640-750nm
Sebuah prisma atau kisi kisi mempunyai kemampuan untuk menguraikan cahaya menjadi warna warna spektralnya. Indeks cahaya suatu bahan menentukan panjang gelombang cahaya mana yang dapat diuraikan menjadi komponen komponennya Untuk cahaya ultraviolett adalah prisma dari kristal untuk cahaya putih adalah prisma dari kaca untuk cahaya infrarot adalah prisma dari garam batu.
Peristiwa dispersi ini terjadi karena perbedaan indeks bias tiap warna cahaya. Cahaya berwarna merah mengalami deviasi terkecil sedangkan warna ungu mengalami deviasi terbesar. Sudut dispersi
F = du - dm F = (nu - nm)b
dm = sudut deviasi merah du = sudut deviasi ungu nu = indeks bias untuk warna ungu nm = indeks bias untuk warna merah
Catatan :
Untuk menghilangkan dispersi antara sinar ungu dan sinar merah kita gunakan susunan Prisma Akhromatik.
Ftot = F kerona - Fflinta = 0
Untuk menghilangkan deviasi suatu warna, misalnya hijau, kita gunakan susunan prisma pandang lurus.
Dtot = Dkerona - Dflinta = 0
Difraksi
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Perubahan tertunda ditampilkan di halaman iniBelum Diperiksa
Langsung ke: navigasi, cari
Prinsip Huygens.
Difraksi
Difraksi cahaya diterangkangkan oleh prinsip Huygens.
Difraksi pada dua celah berjarak d. Fraksi gelombang putih terjadi pada perpotongan antara garis-garis putih. Fraksi gelombang hitam terjadi pada perpotongan garis-garis berwarna hitam. Fraksi-fraksi gelombang terpisah sejauh sudut θ dan dirunut dengan urutan n.
Difraksi adalah penyebaran gelombang, contohnya cahaya, karena adanya halangan. Semakin kecil halangan, penyebaran gelombang semakin besar. Hal ini bisa diterangkan oleh prinsip Huygens. Pada animasi pada gambar sebelah kanan atas terlihat adanya pola gelap dan terang, hal itu disebabkan wavelet-wavelet baru yang terbentuk di dalam celah sempit tersebut saling berinterferensi satu sama lain.
Untuk menganalisa atau mensimulasikan pola-pola tersebut, dapat digunakan Transformasi Fourier atau disebut juga dengan Fourier Optik.
Difraksi cahaya berturut-turut dipelajari antara lain oleh:
* Isaac Newton dan Robert Hooke pada tahun 1660, sebagai inflexion dari partikel cahaya yang sekarang dikenal sebagai cincin Newton.[1]
* Francesco Maria Grimaldi pada tahun 1665 dan didefinisikan sebagai hamburan fraksi gelombang cahaya ke arah yang berbeda-beda. Istilah yang digunakan saat itu mengambil bahasa Latin diffringere yang berarti to break into pieces.[2][3][4]
* James Gregory pada tahun 1673 dengan mengamati pola difraksi pada bulu burung[5] yang kemudian didefinisikan sebagai diffraction grating.[6]
* Thomas Young pada tahun 1803 dan sebagai fenomena interferensi gelombang cahaya. Dari percobaan yang mengamati pola interferensi pada dua celah kecil yang berdekatan,[7] Thomas Young menyimpulkan bahwa kedua celah tersebut lebih merupakan dua sumber gelombang yang berbeda daripada partikel (en:corpuscles).[8]
* Augustin Jean Fresnel pada tahun 1815[9] dan tahun 1818[10], dan menghasilkan perhitungan matematis yang membenarkan teori gelombang cahaya yang dikemukakan sebelumnya oleh Christiaan Huygens[11] pada tahun 1690 hingga teori partikel Newton mendapatkan banyak sanggahan. Fresnel mendefinisikan difraksi dari eksperimen celah ganda Young sebagai interferensi gelombang[12] dengan persamaan:
mλ = dsinθ
dimana d adalah jarak antara dua sumber muka gelombang, θ adalah sudut yang dibentuk antara fraksi muka gelombang urutan ke-m dengan sumbu normal muka gelombang fraksi mula-mula yang mempunyai urutan maksimum m = 0.[13]. Difraksi Fresnel kemudian dikenal sebagai near-field diffraction, yaitu difraksi yang terjadi dengan nilai m relatif kecil.
* Richard C. MacLaurin pada tahun 1909, dalam monographnya yang berjudul Light[14], menjelaskan proses perambatan gelombang cahaya yang terjadi pada difraksi Fresnel jika celah difraksi disoroti dengan sinar dari jarak jauh.
* Joseph von Fraunhofer dengan mengamati bentuk gelombang difraksi yang perubahan ukuran akibat jauhnya bidang pengamatan.[15][16] Difraksi Fraunhofer kemudian dikenal sebagai far-field diffraction.
* Francis Weston Sears pada tahun 1948 untuk menentukan pola difraksi dengan menggunakan pendekatan matematis Fresnel[17]. Dari jarak tegak lurus antara celah pada bidang halangan dan bidang pengamatan serta dengan mengetahui besaran panjang gelombang sinar insiden, sejumlah area yang disebut zona Fresnel (en:Fresnel zone) atau half-period elements dapat dihitung.
Daftar isi
[sembunyikan]
* 1 Difraksi Fresnel
* 2 Difraksi Fraunhofer
* 3 Difraksi celah tunggal
* 4 Difraksi celah ganda
* 5 Difraksi celah majemuk
* 6 Referensi
* 7 Pranala luar
[sunting] Difraksi Fresnel
Geometri difraksi dengan sistem koordinat antara celah pada bidang halangan dan citra pada bidang pengamatan.
Difraksi Fresnel adalah pola gelombang pada titik (x,y,z) dengan persamaan:
E(x,y,z)={z \over {i \lambda}} \iint{ E(x',y',0) \frac{e^{ikr}}{r^2}}dx'dy'
dimana:
r=\sqrt{(x-x')^2+(y-y')^2+z^2} , dan
i \, is the satuan imajiner.
[sunting] Difraksi Fraunhofer
Dalam teori difraksi skalar (en:scalar diffraction theory), Difraksi Fraunhofer adalah pola gelombang yang terjadi pada jarak jauh (en:far field) menurut persamaan integral difraksi Fresnel sebagai berikut:
U(x,y) = \frac{e^{i k z} e^{\frac{ik}{2z} (x^2 + y^2)}}{i \lambda z} \iint_{-\infty}^{\infty} \,u(x',y') e^{-i \frac{2\pi}{\lambda z}(x' x + y' y)}dx'\,dy'. [18]
Persamaan di atas menunjukkan bahwa pola gelombang pada difraksi Fresnel yang skalar menjadi planar pada difraksi Fraunhofer akibat jauhnya bidang pengamatan dari bidang halangan.
[sunting] Difraksi celah tunggal
Pendekatan numerik dari pola difraksi pada sebuah celah dengan lebar empat kali panjang gelombang planar insidennya.
Grafik dan citra dari sebuah difraksi celah tunggal
Sebuah celah panjang dengan lebar infinitesimal akan mendifraksi sinar cahaya insiden menjadi deretan gelombang circular, dan muka gelombang yang lepas dari celah tersebut akan berupa gelombang silinder dengan intensitas yang uniform.
Secara umum, pada sebuah gelombang planar kompleks yang monokromatik \Psi^\prime dengan panjang gelombang &lambda yang melewati celah tunggal dengan lebar d yang terletak pada bidang x′-y′, difraksi yang terjadi pada arah radial r dapat dihitung dengan persamaan:
\Psi = \int_{\mathrm{slit}} \frac{i}{r\lambda} \Psi^\prime e^{-ikr}\,d\mathrm{slit}
dengan asumsi sumbu koordinaat tepat berada di tengah celah, x′ akan bernilai dari -d/2\, hingga +d/2\,, dan y′ dari 0 hingga \infty.
Jarak r dari celah berupa:
r = \sqrt{\left(x - x^\prime\right)^2 + y^{\prime2} + z^2}
r = z \left(1 + \frac{\left(x - x^\prime\right)^2 + y^{\prime2}}{z^2}\right)^\frac{1}{2}
Sebuah celah dengan lebar melebihi panjang gelombang akan mempunyai banyak sumber titik (en:point source) yang tersebar merata sepanjang lebar celah. Cahaya difraksi pada sudut tertentu adalah hasil interferensi dari setiap sumber titik dan jika fasa relatif dari interferensi ini bervariasi lebih dari 2π, maka akan terlihat minima dan maksima pada cahaya difraksi tersebut. Maksima dan minima adalah hasil interferensi gelombang konstruktif dan destruktif pada interferensi maksimal.
Difraksi Fresnel/difraksi jarak pendek yang terjadi pada celah dengan lebar empat kali panjang gelombang, cahaya dari sumber titik pada ujung atas celah akan berinterferensi destruktif dengan sumber titik yang berada di tengah celah. Jarak antara dua sumber titik tersebut adalah λ / 2. Deduksi persamaan dari pengamatan jarak antara tiap sumber titik destruktif adalah:
\frac{d \sin(\theta)}{2}
Minima pertama yang terjadi pada sudut &theta minimum adalah:
d\,\sin\theta_\text{min} = \lambda
Difraksi jarak jauh untuk pengamatan ini dapat dihitung berdasarkan persamaan integral difraksi Fraunhofer menjadi:
I(\theta) = I_0 \,\operatorname{sinc}^2 ( d \sin\theta / \lambda )
dimana fungsi sinc berupa sinc(x) = sin(px)/(px) if x ? 0, and sinc(0) = 1.
[sunting] Difraksi celah ganda
Single & double slit experiment.jpg
Sketsa interferensi Thomas Young pada difraksi celah ganda yang diamati pada gelombang air.[19]
Pada mekanika kuantum, eksperimen celah ganda yang dilakukan oleh Thomas Young menunjukkan sifat yang tidak terpisahkan dari cahaya sebagai gelombang dan partikel. Sebuah sumber cahaya koheren yang menyinari bidang halangan dengan dua celah akan membentuk pola interferensi gelombang berupa pita cahaya yang terang dan gelap pada bidang pengamatan, walaupun demikian, pada bidang pengamatan, cahaya ditemukan terserap sebagai partikel diskrit yang disebut foton.[20][21]
Pita cahaya yang terang pada bidang pengamatan terjadi karena interferensi konstruktif, saat puncak gelombang (en:crest) berinterferensi dengan puncak gelombang yang lain, dan membentuk maksima. Pita cahaya yang gelap terjadi saat puncak gelombang berinterferensi dengan landasan gelombang (en:trough) dan menjadi minima. Interferensi konstruktif terjadi saat:
\frac{n\lambda}{a} = \frac{x}{L} \quad\Leftrightarrow\quad{n}{\lambda}=\frac{xa}{L}\;,
dimana
λ adalah panjang gelombang cahaya
a adalah jarak antar celah, jarak antara titik A dan B pada diagram di samping kanan
n is the order of maximum observed (central maximum is n = 0),
x adalah jarak antara pita cahaya dan central maximum (disebut juga fringe distance) pada bidang pengamatan
L adalah jarak antara celah dengan titik tengah bidang pengamatan
Persamaan ini adalah pendekatan untuk kondisi tertentu.[22] Persamaan matematika yang lebih rinci dari interferensi celah ganda dalam konteks mekanika kuantum dijelaskan pada dualitas Englert-Greenberger.
[sunting] Difraksi celah majemuk
Difraksi celah ganda (atas) dan difraksi celah 5 dari sinar laser
Difraksi sinar laser pada celah majemuk
Pola difraksi dari sinar laser dengan panjang gelombang 633 nm laser melalui 150 celah
Diagram dari difraksi dengan jarak antar celah setara setengah panjang gelombang yang menyebabkan interferensi destruktif
Difraksi celah majemuk (en:Diffraction grating) secara matematis dapat dilihat sebagai interferensi banyak titik sumber cahaya, pada kondisi yang paling sederhana, yaitu yang terjadi pada dua celah dengan pendekatan Fraunhofer, perbedaan jarak antara dua celah dapat dilihat pada bidang pengamatan sebagai berikut:
\ \Delta S={a} \sin \theta
Dengan perhitungan maksima:
\ {a} \sin \theta = n \lambda
dimana
\ n adalah urutan maksima
\ \lambda adalah panjang gelombang
\ a adalah jarak antar celah
and \ \theta adalah sudut terjadinya interferensi konstruktif
Dan persamaan minima:
{a} \sin \theta = \lambda (n+1/2) \,.
Pada sinar insiden yang membentuk sudut θi terhadap bidang halangan, perhitungan maksima menjadi:
a \left( \sin{\theta_n} + \sin{\theta_i} \right) = n \lambda.
Cahaya yang terdifraksi dari celah majemuk dapat dihitung dengan penjumlahan difraksi yang terjadi pada setiap celah berupa konvolusi dari pola difraksi dan interferensi.
Interferensi
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Perubahan tertunda ditampilkan di halaman iniBelum Diperiksa
Langsung ke: navigasi, cari
Interferensi antar 2 gelombang.
Interferensi adalah interaksi antar gelombang di dalam suatu daerah. Interferensi dapat bersifat membangun dan merusak. Bersifat membangun jika beda fase kedua gelombang sama sehingga gelombang baru yang terbentuk adalah penjumlahan dari kedua gelombang tersebut. Bersifat merusak jika beda fasenya adalah 180 derajat, sehingga kedua gelombang saling menghilangkan.
Polarisasi
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Perubahan tertunda ditampilkan di halaman iniBelum Diperiksa
Langsung ke: navigasi, cari
Jenis polarisasi melingkar dari gelombang cahaya, dengan medan E (hijau) dan medan H (merah), dan arah rambatan ke atas
Polarisasi cahaya atau polarisasi optik adalah salah satu sifat cahaya yang bergerak secara oscillasi dan menuju arah tertentu. Karena cahaya termasuk gelombang elektromagnetik, maka cahaya ini mempunyai medan listrik, E dan juga medan magnet, H yang keduanya saling beroscilasi dan saling tegak lurus satu sama lain, serta tegak lurus terhadap arah rambatan (lihat gambar).
Cahaya juga dikategorikan sebagai gelombang transversal; yang berarti bahwa cahaya merambat tegak lurus terhadap arah oscilasinya. Adapun syaratnya adalah bahwa gelombang tersebut mempunyai arah oscilasi tegak lurus terhadap bidang rambatannya. Gelombang bunyi, berbeda dengan gelombang cahaya, tidak dapat terpolarisasi sehingga dia bukan gelombang transversal.
Suatu cahaya dikatakan terpolarisasi apabila cahaya itu bergerak merambat ke arah tertentu. Arah polarisasi gelombang ini dicirikan oleh arah vektor bidang medan listrik gelombang tersebut serta arah vektor bidang medan magnetnya.
Beberapa macam / jenis polarisasi: polarisasi linear, polarisasi melingkar, polarisasi ellips. Gelombang dengan polarisasi melingkar dan polarisasi ellips dapat diuraikan menjadi 2 gelombang dengan polarisasi tegak lurus. Polarisasi linear terjadi ketika cahaya merambat hanya dengan satu arah yang tegak lurus terhadap arah rambatan atau bidang medan listriknya.
Medan magnet
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Perubahan tertunda ditampilkan di halaman iniBelum Diperiksa
Langsung ke: navigasi, cari
Arus mengalir melalui sepotong kawat membentuk suatu medan magnet (M) disekeliling kawat. Medan tersebut terorientasi menurut aturan tangan kanan.
Medan magnet, dalam ilmu Fisika, adalah suatu medan yang dibentuk dengan menggerakan muatan listrik (arus listrik) yang menyebabkan munculnya gaya di muatan listrik yang bergerak lainnya. (Putaran mekanika kuantum dari satu partikel membentuk medan magnet dan putaran itu dipengaruhi oleh dirinya sendiri seperti arus listrik; inilah yang menyebabkan medan magnet dari ferromagnet "permanen"). Sebuah medan magnet adalah medan vektor: yaitu berhubungan dengan setiap titik dalam ruang vektor yang dapat berubah menurut waktu. Arah dari medan ini adalah seimbang dengan arah jarum kompas yang diletakkan di dalam medan tersebut.
[sunting] Sifat
Hasil kerja Maxwell telah banyak menyatukan listrik statis dengan kemagnetan, yang menghasilkan sekumpulan empat persamaan mengenai kedua medan tersebut. Namun, berdasarkan rumus Maxwell, masih terdapat dua medan yang berbeda yang menjelaskan gejala yang berbeda. Einsteinlah yang berhasil menunjukkannya dengan relativitas khusus, bahwa medan listrik dan medan magnet adalah dua aspek dari hal yang sama (tensor tingkat 2), dan seorang pengamat bisa merasakan gaya magnet di mana seorang pengamat bergerak hanya merasakan gaya elektrostatik. Jadi, dengan menggunakan relativitas khusus, gaya magnet adalah wujud gaya elektrostatik dari muatan listrik yang bergerak, dan bisa diprakirakan dari pengetahuan tentang gaya elektrostatik dan gerakan muatan tersebut (relatif terhadap seorang pengamat).
Gaya Lorentz
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Perubahan tertunda ditampilkan di halaman iniBelum Diperiksa
Langsung ke: navigasi, cari
Kaidah tangan kanan dari gaya Lorentz (F) akibat dari arus listrik, I dalam suatu medan magnet B
Gaya Lorentz adalah gaya (dalam bidang fisika) yang ditimbulkan oleh muatan listrik yang bergerak atau oleh arus listrik yang berada dalam suatu medan magnet, B. Arah gaya ini akan mengikuti arah maju skrup yang diputar dari vektor arah gerak muatan listrik (v) ke arah medan magnet, B, seperti yang terlihat dalam rumus berikut:
\mathbf{F} = q (\mathbf{v} \times \mathbf{B})
di mana
F adalah gaya (dalam satuan/unit newton)
B adalah medan magnet (dalam unit tesla)
q adalah muatan listrik (dalam satuan coulomb)
v adalah arah kecepatan muatan (dalam unit meter per detik)
× adalah perkalian silang dari operasi vektor.
Untuk gaya Lorentz yang ditimbulkan oleh arus listrik, I, dalam suatu medan magnet (B), rumusnya akan terlihat sebagai berikut (lihat arah gaya dalam kaidah tangan kanan):
\mathbf{F} = \mathbf{L} I \times \mathbf{B} \,
di mana
F = gaya yang diukur dalam unit satuan newton
I = arus listrik dalam ampere
B = medan magnet dalam satuan tesla
\times = perkalian silang vektor, dan
L = panjang kawat listrik yang dialiri listrik dalam satuan meter.
Diposkan oleh Fisika di 04.56 0 komentar
Posting Lama Beranda
Langgan: Entri (Atom)
Pengikut
Arsip Blog
* ▼ 2010 (2)
o ▼ Desember (1)
+ Gerak harmonik sederhana ...
o ► Juni (1)
+ Momentum Ayunan Newton membuktikan adanya ...
* ► 2009 (3)
o ► Desember (3)
+ Vektor satuan Dari Wikipedia bahasa Indonesi...
+ Sistem koordinat Kartesius Dari Wikipedia ba...
+ physics is ...
Mengenai Saya
Fisika
Lihat profil lengkapku
Sabtu, 11 Desember 2010
Langganan:
Postingan (Atom)